如图所示,质量为m=1kg的可视为质点的小物块轻轻放在水平匀速运动的传送带上的P点,随传送带运动到A点后水平抛出,小物块恰好无碰撞的沿圆弧切线从B点进入竖直光滑圆弧轨道下滑,圆弧轨道与质量为M=2kg的足够长的小车左端在最低点O点相切,并在O点滑上小车,水平地面光滑,当物块运动到障碍物Q处时与Q发生无机械能损失的碰撞。碰撞前物块和小车已经相对静止,而小车可继续向右运动(物块始终在小车上),小车运动过程中和圆弧无相互作用。已知圆弧半径R=1.0m,圆弧对应的圆心角θ为53°,A点距水平面的高度h=0.8m,物块与小车间的动摩擦因数为μ=0.1,重力加速度g=10m/s2,sin53°=0.8,cos53°=0.6。试求:
(1)小物块离开A点的水平初速度v1;
(2)小物块经过O点时对轨道的压力;
(3)第一次碰撞后直至静止,物块相对小车的位移和小车做匀减速运动的总时间。
如图1所示, A、B、C、D为固定于竖直平面内的闭合绝缘轨道,AB段、CD段均为半径R=1.6m的半圆,BC、AD段水平,AD=BC=8m。B、C之间的区域存在水平向右的有界匀强电场,
场强E=5×105V/m。质量为m=4×10-3kg、带电量q=+1×10-8C的小环套在轨道上。小环与轨道AD段
的动摩擦因数为,与轨道其余部分的摩擦忽略不计。现使小环在D点获得沿轨道向左的初速度
v0=4m/s,且在沿轨道AD段运动过程中始终受到方向竖直向上、大小随速度变化的力F(变化关系如
图2)作用,小环第一次到A点时对半圆轨道刚好无压力。不计小环大小,g取10m/s2。求:
(1)小环运动第一次到A时的速度多大?
(2)小环第一次回到D点时速度多大?
(3)小环经过若干次循环运动达到稳定运动状态,此时到达D点时速度应不小于多少?
如图所示,在同一竖直平面内,一轻质弹簧一端固定,静止斜靠在光滑斜面上,另一自由端恰好与水平线齐平,一长为的轻质细线一端固定在点,另一端系一质量为的小球,点到的距离为.现将细线拉至水平,小球从位置由静止释放,到达点正下方时,细线刚好被拉断.当小球运动到点时恰好能沿斜面方向压缩弹簧,不计碰撞时的机械能损失,弹簧的最大压缩量为(在弹性限度内),求:
(1)细线所能承受的最大拉力;
(2)斜面的倾角;
(3)弹簧所获得的最大弹性势能.
如图所示,静止于A处的离子,经电压为U的加速电场加速后沿图中圆弧虚线通过静电分析器,从P点垂直CN进入矩形区域的有界匀强电场,电场方向水平向左。静电分析器通道内有均匀辐向分布的电场,已知圆弧所在处场强为E0,方向沿圆弧半径指向圆心O。离子质量为m、电荷量为q,、,离子重力不计。
(1)求圆弧虚线对应的半径R的大小;
(2)若离子恰好能打在QN板的中点上,求矩形区域QNCD内匀强电场场强E的值;
(3)若撤去矩形区域QNCD内的匀强电场,换为垂直纸面向里的匀强磁场,且离子恰能从QN板下端飞出QNCD区域,求磁场磁感应强度B。
如图所示,滑块质量为m,与水平地面间的动摩擦因数为0.1,它以v0=3 的初速度由A点开始向B点滑行,AB=5R,并滑上光滑的半径为R的1/4圆弧BC,在C点正上方有一离C点高度也为R的旋转平台,沿平台直径方向开有两个离轴心距离相等的小孔P、Q,孔径大于滑块的大小,旋转时两孔均能达到C点的正上方.求:(1)滑块运动到光滑轨道B点时对轨道的压力;(2)若滑块滑过C点后穿过P孔,求滑块过P点后还能上升的最大高度;(3)若滑块滑过C点后从P孔上升又恰能从Q孔落下,平台转动的角速度ω应满足什么条件?
(16分)如图所示,让一可视为质点的小球从光滑曲面轨道上的A点无初速滑下,运动到轨道最低点B后,进入半径为R的光滑竖直圆轨道,并恰好通过轨道最高点C,离开圆轨道后继续在光滑平直轨道上运动到D点后抛出,最终撞击到搁在轨道末端点和水平地面之间的木板上,已知轨道末端点距离水平地面的高度为H=0.8m,木板与水平面间的夹角为θ=37°,小球质量为m=0.1kg,A点距离轨道末端竖直高度为h=0.2m,不计空气阻力。(取g=10m/s2,sin37°=0.6,cos37°=0.8)
⑴求圆轨道半径R的大小;
⑵求小球从轨道末端点冲出后,第一次撞击木板时的位置距离木板上端的竖直高度有多大;
⑶若改变木板的长度,并使木板两端始终与平台和水平面相接,试通过计算推导小球第一次撞击木板时的动能随木板倾角θ变化的关系式,并在图中作出Ek-(tanθ)2图象。
如图所示,在E=103V/m的竖直匀强电场中,有一光滑的半圆形绝缘轨道QPN与一水平绝缘轨道MN连接,半圆形轨道平面与电场线平行,P为QN圆弧的中点,其半径R=40cm,一带正电q=10-4C的小滑块质量m=10g,与水平轨道间的动摩擦因数μ=0.15,位于N点右侧1.5m处,取g=10m/s2,求:
(1)要使小滑块恰能运动到圆轨道的最高点Q,则滑块应以多大的初速度v0?
(2)这样运动的滑块通过P点时对轨道的压力是多大?
(12分)如图所示,一质量为m=1 kg的小物块轻轻放在水平匀速运动的传送带上的A点,随传送带运动到B点,小物块从C点沿圆弧切线进入竖直光滑的半圆轨道恰能做圆周运动,已知圆弧半径R=0.9 m,轨道最低点为D,D点距水平面的高度h=0.8 m.小物块离开D点后恰好垂直碰击放在水平面上E点的固定倾斜挡板,已知小物块与传送带间的动摩擦因数μ=0.3,传送带以5 m/s恒定速率顺时针转动,g=10 m/s2.求:
(1)传送带AB两端的距离;
(2)小物块经过D点时对轨道的压力的大小;
(3)倾斜挡板与水平面间的夹角θ的正切值.
(14分)某同学玩“弹珠游戏”装置如图所示,S形管道BC由两个半径为R的1/4圆形管道拼接而成,管道内直径略大于小球直径,且远小于R,忽略一切摩擦,用质量为m的小球将弹簧压缩到A位置,由静止释放,小球到达管道最高点C时对管道恰好无作用力,求:( )
⑴小球到达最高点C的速度大小;
⑵若改用同样大小质量为2m的小球做游戏,其它条件不变,求小球能到达的最大高度;
⑶若改用同样大小质量为m/4的小球做游戏,其它条件不变,求小球落地点到B点的距离。
如图所示,光滑绝缘的圆形轨道BCDG位于竖直平面内,轨道半径为R,下端与水平绝缘轨道在B点平滑连接,整个轨道处在水平向左的匀强电场中.现有一质量为m、带正电的小滑块(可视为质点)置于水平轨道上,滑块受到的电场力大小为mg,滑块与水平轨道间的动摩擦因数为0.5,重力加速度为g.求:
(1)若滑块从水平轨道上距离B点为s=3R的A点由静止释放,求滑块到达与圆心O等高的C点时的速度大小;
(2)在(1)的情况下,求滑块到达C点时对轨道的作用力大小;
(3)改变s的大小,使滑块恰好始终沿轨道滑行,且从G点飞出轨道,求滑块在圆轨道上滑行过程中的最小速度大小.
“太空粒子探测器”是由加速、偏转和收集三部分组成,其原理可简化如下:如图1所示,辐射状的加速电场区域边界为两个同心平行半圆弧面,圆心为O,外圆弧面AB的电势为 ,内圆弧面CD的电势为,足够长的收集板MN平行边界ACDB,ACDB与MN板的距离为L.假设太空中漂浮着质量为m,电量为q的带正电粒子,它们能均匀地吸附到AB圆弧面上,并被加速电场从静止开始加速,不计粒子间的相互作用和其它星球对粒子的影响,不考虑过边界ACDB的粒子再次返回。
(1)求粒子到达O点时速度的大小;
(2)如图2所示,在PQ(与ACDB重合且足够长)和收集板MN之间区域加一个匀强磁场,方向垂直纸面向内,则发现均匀吸附到AB圆弧面的粒子经O点进入磁场后最多有能打到MN板上,求所加磁感应强度的大小;
(3)如图3所示,在PQ(与ACDB重合且足够长)和收集板MN之间区域加一个垂直MN的匀强电场,电场强度的方向如图所示,大小,若从AB圆弧面收集到的某粒子经O点进入电场后到达收集板MN离O点最远,求该粒子到达O点的速度的方向和它在PQ与MN间运动的时间。
如图所示是某次四驱车比赛的轨道某一段。小明控制的四驱车(可视为质点),质量m=1.0kg,额定功率为P=7W。小明的四驱车到达水平平台上A点时速度很小(可视为0),此时启动四驱车的发动机并直接使发动机的功率达到额定功率,一段时间后关闭发动机。当四驱车由平台边缘点飞出后,恰能沿竖直光滑圆弧轨道CDE上C点的切线方向飞入圆形轨道。已知AB间的距离L=6m,BF间高度差h=0.8m,圆轨道的半径R=1m,∠COD=53°,四驱车在AB段运动时的阻力恒为1N。重力加速度g取10m/s2,不计空气阻力。sin53°=0.8,cos53°=0.6,求:
(1)求四驱车到达C点时的速度大小;
(2)发动机在水平平台上工作的时间;
(3)四驱车第一次经过D点时对轨道的压力大小。
(16分)小车上有一个固定支架,支架上用长为的绝缘细线悬挂质量为m、电量为q的小球,处于水平方向的匀强电场中。小车在距离矮墙x处,向着矮墙从静止开始做加速度a匀加速运动,此时,细线刚好竖直,如图所示。当小车碰到矮墙时,立即停止运动,且电场立刻消失。已知细线最大承受拉力为7mg。
⑴求匀强电场的电场强度;
⑵若小球能通过最高点,写出最高点时细线的拉力与x的关系式;
⑶若要使细线不断裂也不松弛,确定x的取值范围。
如图所示,轮半径r=10 cm的传送带,水平部分AB的长度L=1.5 m,与一圆心在O点、半径R=1 m的竖直光滑圆轨道的末端相切于A点,AB高出水平地面H=1.25 m,一质量m=0.1 kg的小滑块(可视为质点),由圆轨道上的P点从静止释放,OP与竖直线的夹角θ=37°.已知sin 37°=0.6,cos 37°=0.8,g=10 m/s2,滑块与传送带间的动摩擦因数μ=0.1,不计空气阻力.
(1)求滑块对圆轨道末端的压力;
(2)若传送带一直保持静止,求滑块的落地点与B间的水平距离;
(3)若传送带以v0=0.5 m/s的速度沿逆时针方向运行(传送带上部分由B到A运动),求滑块在传送带上滑行过程中产生的内能.
如图所示,一质量m1=1kg半径R=0.8m的光滑四分之一圆弧滑槽AB,固定于光滑水平台面上,现有可视为质点的滑块m2=15kg,从滑槽顶端A点静止释放,到达底端B后滑上与水平台面等高的水平传送带CD,传送带固定不转动时,滑块恰能到达D端,已知传送带CD的长L=4m,g取10m/s2。
(1)滑块滑到圆弧底端B点时对滑槽的压力多大?滑块从C到D需要多长时间?
(2)如果滑槽不固定,滑块滑到圆弧底端B时的速度多大?
(3)如果滑槽不固定,如果滑槽不固定,为使滑块从C到D历时与第一问相同,传送带应以多大的速度匀速转动?(答案可用根号表示)