如下图是阿毛同学的漫画中出现的装置,描述了一个“吃货”用来做“糖炒栗子”的“萌”事儿:将板栗在地面小平台上以一定的初速度经两个四分之一圆弧衔接而成的轨道,从最高点P飞出进入炒锅内,利用来回运动使其均匀受热。我们用质量为m的小滑块代替栗子,借这套装置来研究一些物理问题。设大小两个四分之一圆弧半径为2R和R,小平台和圆弧均光滑。将过锅底的纵截面看作是两个斜面AB、CD和一段光滑圆弧组成。斜面动摩擦因数均为0.25,而且不随温度变化。两斜面倾角均为,AB=CD=2R,A、D等高,D端固定一小挡板,碰撞不损失机械能。滑块的运动始终在包括锅底最低点的竖直平面内,重力加速度为g.
(1)如果滑块恰好能经P点飞出,为了使滑块恰好沿AB斜面进入锅内,应调节锅底支架高度使斜面的A、D点离地高为多少?
(2)接(1)问,求滑块在锅内斜面上走过的总路程。
(3)对滑块的不同初速度,求其通过最高点P和小圆弧最低点Q时受压力之差的最小值。
如图所示,一质点沿半径为r=20cm的圆周自A点出发,逆时针运动2s,运动圆周到达B点,求:
(1)质点的位移和路程.
(2)质点的平均速度和平均速率.
(8分)一物体做匀变速直线运动,某时刻速率是4m/s,经过1s后的速率是10m/s,那么在这1s内,物体的加速度的大小可能是多少?
如图所示,两个质量均为m的小环套在一水平放置的粗糙长杆上,两根长度均为l的轻绳一端系在小环上,另一端系在质量为M的木块上,两个小环之间的距离也为l,小环保持静止.(认为最大静摩擦力等于滑动摩擦力).试求:
(1)每根绳的拉力多大;
(2)水平杆对每个小环的支持力;
(3)小环与杆之间的动摩擦因数μ至少为多大?
如图所示,将质量为m="1" kg的小物块放在长为L="1.5" m的小车左端,车的上表面粗糙,物块与车上表面间动摩擦因数μ=0.5,直径d="1.8" m的光滑半圆形轨道固定在水平面上且直径MON竖直,车的上表面和轨道最低点高度相同,为h="0.65" m,开始车和物块一起以10 m/s的初速度在光滑水平面上向右运动,车碰到轨道后立即停止运动,取g="10" m/s2,求:
(1)小物块刚进入半圆轨道时对轨道的压力;
(2)小物块落地点距车左端的水平距离。
如图所示,三段轻绳子吊着一个物体,AC和BC两段绳子互相垂直,且BC绳子与竖直方向的夹角为60о。已知BC绳子受到的拉力大小为30N,则物体的重力大小为多少?
如图是过山车的部分模型图。模型图中光滑圆形轨道的半径R=8.1m,该光滑圆形轨道固定在倾角为斜轨道面上的Q点,圆形轨道的最高点A与P点平齐,圆形轨道与斜轨道之间圆滑连接。现使小车(视作质点)从P点以一定的初速度沿斜面向下运动,已知斜轨道面与小车间的动摩擦因数为,不计空气阻力,过山车质量为20kg,取g=10m/s2,。若小车恰好能通过圆形轨道的最高点A处,求:
(1)小车在A点的速度为多大;
(2)小车在圆形轨道的最低点B时对轨道的压力为重力的多少倍;
(3)小车在P点的动能.
如图所示,AB是位于竖直平面内、半径R=0.5 m的1/4圆弧形的光滑绝缘轨道,其下端点B与水平绝缘轨道平滑连接,整个轨道处在水平向左的匀强电场中,电场强度E=5×103 N/C.今有一质量为m=0.1 kg、带电荷量q=+8×10-5C的小滑块(可视为质点)从A点由静止释放.若已知滑块与水平轨道间的动摩擦因数μ=0.05,取g=10 m/s2,求:
(1)小滑块第一次经过圆弧形轨道最低点B时对B点的压力;
(2)小滑块在水平轨道上通过的总路程.
如图所示,物体A经一轻质弹簧与下方地面上的物体B相连,物体A、B的质量均为m,弹簧的劲度系数为k,A、B都处于静止状态。一条不可伸长的轻绳绕过轻滑轮,一端连物体A,另一端连一轻挂钩,开始时各段绳都处于伸直状态,A上方的一段绳沿竖直方向。现在挂钩上挂一物体C并从静止状态开始释放,已知物体B刚离开地面时,物体A恰好获得最大速度,重力加速度为g,求:
(1)物体B刚离开地面时,物体C下落的高度h;
(2)物体C的质量M;
(3)物体A获得的最大速度。
在水平向右的匀强电场中,有一质量为m、带正电的小球,用长为L的绝缘细线悬挂于O点,当小球处于A点时静止,细线与竖直方向夹角为a(如图所示),现在A点给小球一个垂直于悬线的初速度v0,使小球恰能在竖直平面内做圆周运动,求:
(1)在A点给小球的初速度v0多大?
(2)此过程中小球所受的最大拉力与最小拉力之差为多大?
(6分)汽车从制动到停止下来共用了5s。这段时间内,汽车每1s前进的距离分别是18m、14m、10m、6m、2m。求:
⑴汽车前1s、前2s、前3s、前4s和全程的平均速度;
⑵汽车运动的最后2s的平均速度。
如图所示,小车M处在光滑水平面上,其上表面粗糙,靠在(不粘连)半径为R=0.2m的1/4光滑固定圆弧轨道右侧,一质量m="1" kg的滑块(可视为质点)从A点正上方H=3m处自由下落经圆弧轨道底端B滑上等高的小车表面。滑块在小车上滑行1s后离开。已知小车质量M=5kg,表面离地高h=1.8m,滑块与小车间的动摩擦因数μ=0.5。(取g="10" m/s2).求:
(1)滑块通过A点时滑块受到的弹力大小和方向
(2)小车M的长度
(3)滑块落地时,它与小车右端的水平距离
如图甲所示,放在光滑水平地面上的长木板质量M="0" 5kg,木板右端放一质量m="0" 5kg的滑块(可视为质点),滑块与木板间的动摩擦因数="0" 4;滑块的正上方有一悬点O,通过长l="0" 8m的轻绳吊一质量m0="1" 0kg的小球 现将小球拉至与O点处于同一水平位置,由静止释放,小球摆至最低点时与滑块发生正碰,且m0与m只碰一次,小球碰后的动能与其向上摆动高度的关系如图乙所示,g取10m/s2,求:
(1)碰前瞬间绳子对小球拉力的大小;
(2)碰后瞬间滑块速度的大小;
(3)要使滑块不会从木板上滑下,则木板的长度应滿足什么条件?
.如图所示,现在有一个小物块,质量为m=80g,带上正电荷q=210-4C。与水平的轨道之间的滑动摩擦系数m =0.2,在一个水平向左的匀强电场中,E=103V/m,在水平轨道的末端N处,连接一个光滑的半圆形轨道,半径为R=40cm,取g =10m/s2,求:
(1)小物块恰好运动到轨道的最高点,那么小物块应该从水平哪个位置释放?
(2)如果在上小题的位置释放小物块,当它运动到P(轨道中点)点时对轨道的压力等于多少?
如图所示,一质量为m、长为L的木板A静止在光滑水平面上,其左侧固定一劲度系数为k的水平轻质弹簧,弹簧原长为l0,右侧用一不可伸长的轻质细绳连接于竖直墙上。现使一可视为质点小物块B以初速度v0从木板的右端无摩擦地向左滑动,而后压缩弹簧。设B的质量为λm,当时细绳恰好被拉断。已知弹簧弹性势能的表达式,其中k为劲度系数,x为弹簧的压缩量。求:
(1)细绳所能承受的最大拉力的大小Fm
(2)当时,小物块B滑离木板A时木板运动位移的大小sA
(3)当λ=2时,求细绳被拉断后长木板的最大加速度am的大小
(4)为保证小物块在运动过程中速度方向不发生变化,λ应满足的条件