如图所示,两木块的质量分别为,两轻质弹簧的劲度系数分别为和,整个系统处于平衡状态,则两轻质弹簧的形变量大小分别为( )
A. | B. |
C. | D. |
放在水平地面上的一物体,受到方向不变的水平推力F的作用,力F与时间t的关系和物体速度v与时间t的关系如图所示,则下列说法正确的是()
( )
A.物体与地面间的摩擦因数为0.2 |
B.物体与地面间的摩擦因数为0.4 |
C.9 s内,力F做的功是126 J |
D.3~6 s和6~9 s两段时间内摩擦力的平均功率相等 |
如图所示是放置在竖直平面内游戏滑轨的模拟装置,滑轨由四部分粗细均匀的金属杆组成:水平直轨AB,半径分别为R1和R2的圆弧轨道, 其中R2=3.0m,长为L=6m的倾斜直轨CD,AB.CD与两圆弧轨道相切,其中倾斜直轨CD部分表面粗糙,动摩擦因数为μ=1/6,其余各部分表面光滑,一质量为m=2kg的滑环(套在滑轨上),从AB的中点E处以V0=10m/s的初速度水平向右运动。已知θ=370, g取10m/s2。(sinθ=0.6,cosθ=0.8)求:
(1)滑环第一次通过圆弧轨道O2的最低点F处时对轨道的压力;
(2)滑环克服摩擦力做功所通过的总路程。
如图,放在墙角的木板AB重力忽略不计,B端靠在光滑竖直墙上,A端放在粗糙水平面上,处于静止状态,一质量为m的物块从B端沿木板匀速下滑,在此过程中关于受力情况的分析错误的是
A.木板对物块的作用力不变 |
B.地面对木板A端的支持力大小不变 |
C.墙对木板B端的弹力与地面对木板A端的摩擦力大小相等 |
D.墙对木板B端的弹力大于地面对木板A端的摩擦力 |
如图所示,滑块的质量m1="0.1" kg,用长为L的细线悬挂质量为m2="0.1" kg的小球,小球可视为质点,滑块与水平地面间及滑块与传送带间的动摩擦因数均为μ=0.2,滑块到小球及小球到传送带的距离均为s="2" m,传送带以v=4m/s的恒定速度匀速逆时针转动,传送带足够长。开始时,滑块以速度v0="8" m/s沿水平方向向右运动,并与小球发生弹性正碰,碰后小球能在竖直平面内做完整的圆周运动。问:
(1)细线长度L应该满足什么条件?
(2)若碰撞后小球恰能在竖直平面内完成完整的圆周运动并再次与滑块弹性正碰,则滑块与小球第一次碰撞后瞬间,悬线对小球的拉力多大?
(3)滑块从滑上传送带到从传送带上滑下,一共产生多少热量?(重力加速度g=10m/s2)
已知某星球的半径为R,有一距星球表面高度h=R处的卫星,绕该星球做匀速圆周运动,测得其周期T=2π。
求:(1)该星球表面的重力加速度g
(2)若在该星球表面有一如图所示的装置,其中AB部分为一长为12.8m并以5m/s速度顺时针匀速转动的传送带,BCD部分为一半径为1.6m竖直放置的光滑半圆形轨道,直径BD恰好竖直,并与传送带相切于B点。现将一质量为0.1kg的可视为质点的小滑块无初速地放在传送带的左端A点上,已知滑块与传送带间的动摩擦因数为0.5。
试求出到达D点时对轨道的压力大小;
(提示:=3.2)
如图所示,半径为R的光滑圆形轨道固定在竖直面内.小球A、B质量分别为m、βm(β为待定系数).A球从左边与圆心等高处由静止开始沿轨道下滑,与静止于轨道最低点的B球相撞,碰撞后A、B球能达到的最大高度均为R,碰撞中无机械能损失.重力加速,碰撞中无机械能损失.重力加速度为g.试求:
(1)待定系数β;
(2)第一次碰撞刚结束时小球A、B各自的速度和B球对轨道的压力;
(3)小球A、B在轨道最低处第二次碰撞刚结束时各自的速度,并讨论小球A、B在轨道最低处第n次碰撞刚结束时各自的速度.
如图所示,质量为M、半径为R的半球形物体A静止在粗糙水平地面上,通过最高点处的钉子用水平轻质细线拉住一质量为m、半径为r的光滑球B,重力加速度为g。则( )
A.A对地面的摩擦力方向向左 |
B.B对A的压力大小为 |
C.细线对小球的拉力大小为 |
D.若剪断绳子(A不动),则此瞬时球B加速度大小为 |
粗糙水平轨道AB与竖直平面内的光滑圆弧轨道BC相切于B点,一物块(可看成为质点)在水平向右的恒力F作用下自水平轨道的P点处由静止开始匀加速运动到B,此时撤去该力,物块滑上圆弧轨道,在圆弧轨道上运动一段时间后,回到水平轨道,恰好返回到P点停止运动,已知物块在圆弧轨道上运动时对轨道的压力最大值为F1=2.02N,最小值为F2=1.99N,当地重力加速度为g=10m/s2.
(1)求物块的质量m的大小;
(2)若已知圆弧轨道的半径为R=8m,P点到B点的距离是x=0.5m,求F的大小.
如图所示,AB是位于竖直平面内、半径R=0.5 m的圆弧形的光滑绝缘轨道,其下端点B与水平绝缘轨道平滑连接,整个轨道处在水平向左的匀强电场中,电场强度E=5×103 N/C.今有一质量为m=0.1 kg、带电荷量q=+8×10-5C的小滑块(可视为质点)从A点由静止释放.若已知滑块与水平轨道间的动摩擦因数μ=0.05,取g=10 m/s2,求:
(1) 小滑块第一次经过圆弧形轨道最低点B时对B点的压力;
(2) 小滑块运动到右侧最远处到最低点B的距离;
(3) 小滑块在水平轨道上通过的总路程。
如图所示,轻质弹簧的劲度系数为20 N/cm,用其拉着一个重200 N的物体在水平面上运动.当弹簧的伸长量为4 cm时,物体恰在水平面上做匀速直线运动.
(1)求物体与水平面间的动摩擦因数;
(2)当弹簧的伸长量为6 cm时,物体受到的水平拉力有多大?这时物体受到的摩擦力有多大?
(3)如果在物体运动的过程中突然撤去弹簧,而物体在水平面上能继续滑行,这时物体受到的摩擦力有多大?
如图所示,水平地面上叠放着物块A和木板B,物块A用水平轻质弹簧拉着固定在墙上。已知,物体A的质量mA=5kg,木板B的质量mB=10kg,物块与木板之间、木板与地面之间的动摩擦因数均为μ=0.2,弹簧的劲度系数k=200N/m。g 取10 N/kg,若要将物木板B从A的下方匀速拉出。求:
(1)轻质弹簧的伸长量x;
(2)作用在物块B上的水平拉力F的大小。
如图所示,一质量为m的小球,用长为L的轻绳悬挂于O点,初始时刻小球静止于P点。第一次小球在水平拉力F作用下,从P点缓慢地移动到Q点,此时轻绳与竖直方向夹角为θ,张力大小为T1;第二次在水平恒力F′作用下,从P点开始运动并恰好能到达Q点,至Q点时轻绳中的张力为大小T2,不计空气阻力,重力加速度为g,关于这两个过程,下列说法中正确的是
A.第一个过程中,拉力F在逐渐变大,且最大值一定大于F′ |
B.两个过程中,轻绳的张力均变大 |
C., |
D.第二个过程中,重力和水平恒力F′的合力的功率先增加后减小 |
一起重机的钢绳由静止开始匀加速提起质量为m的重物,当重物的速度为v1时,起重机的有用功率达到最大值P,以后起重机保持该功率不变,继续提升重物,直到以最大速度v2匀速上升为止,物体上升的高度为h,则整个过程中,下列说法正确的是
A.钢绳的最大拉力为 |
B.钢绳的最大拉力为 |
C.重物的最大速度 |
D.重物匀加速运动的加速度为 |
一滑块经水平轨道AB,进入竖直平面内的四分之一圆弧轨道BC。已知滑块的质量m=0.6kg,在A点的速度vA=8m/s,AB长x=5m,滑块与水平轨道间的动摩擦因数μ=0.15,圆弧轨道的半径R=2m,滑块离开C点后竖直上升h=0.2m,取g=10m/s2。
(不计空气阻力)求:
(1)滑块经过B点时速度的大小;
(2)滑块冲到圆弧轨道最低点B时对轨道的压力;
(3)滑块在圆弧轨道BC段克服摩擦力所做的功。