如图所示,质量为M、半径为R的半球形物体A静止在粗糙水平地面上,通过最高点处的钉子用水平轻质细线拉住一质量为m、半径为r的光滑球B,重力加速度为g。则( )
A.A对地面的摩擦力方向向左 |
B.B对A的压力大小为 |
C.细线对小球的拉力大小为 |
D.若剪断绳子(A不动),则此瞬时球B加速度大小为 |
如图所示,水平绝缘粗糙的轨道AB与处于竖直平面内的半圆形绝缘光滑轨道BC平滑连接,半圆形轨道的半径R=0.40m.在轨道所在空间存在水平向右的匀强电场,电场线与轨道所在的平面平行,电场强度E=1.0×104N/C.现有一电荷量q=+1.0×10﹣4C,质量m=0.10kg的带电体(可视为质点),在水平轨道上的P点由静止释放,带电体恰好能通过半圆形轨道的最高点C,然后落至水平轨道上的D点.取g=10m/s2.试求:
(1)带电体在圆形轨道C点的速度大小.
(2)D点到B点的距离xDB.
(3)带电体运动到圆形轨道B点时对圆形轨道的压力大小.
(4)带电体在从P开始运动到落至D点的过程中的最大动能.
粗糙水平轨道AB与竖直平面内的光滑圆弧轨道BC相切于B点,一物块(可看成为质点)在水平向右的恒力F作用下自水平轨道的P点处由静止开始匀加速运动到B,此时撤去该力,物块滑上圆弧轨道,在圆弧轨道上运动一段时间后,回到水平轨道,恰好返回到P点停止运动,已知物块在圆弧轨道上运动时对轨道的压力最大值为F1=2.02N,最小值为F2=1.99N,当地重力加速度为g=10m/s2.
(1)求物块的质量m的大小;
(2)若已知圆弧轨道的半径为R=8m,P点到B点的距离是x=0.5m,求F的大小.
如图所示,在光滑绝缘的水平面上,放置两块直径为2L的同心半圆形金属板A、B,两板间的距离很近,半圆形金属板A、B的左边有水平向右的匀强电场E1,半圆形金属板A、B之间存在电场,两板间的电场强度E2可认为大小处处相等,方向都指向O,现从正对A、B板间隙、到两板的一端距离为d处静止释放一个质量为m、电荷量为q的带正电微粒(不计重力),此微粒恰能在两板间运动且不与板发生相互作用.
(1)求半圆形金属板A、B之间电场强度的E2的大小?
(2)从释放微粒开始,经过多长时间微粒的水平位移最大?
如图所示,静止于A处的离子,经电压为U的加速电场加速后沿图中圆弧虚线通过静电分析器,从P点垂直CN进入矩形区域的有界匀强电场,电场方向水平向左。静电分析器通道内有均匀辐向分布的电场,已知圆弧所在处场强为E0,方向沿圆弧半径指向圆心O。离子质量为m、电荷量为q,、,离子重力不计。
(1)求圆弧虚线对应的半径R的大小;
(2)若离子恰好能打在QN板的中点上,求矩形区域QNCD内匀强电场场强E的值;
(3)若撤去矩形区域QNCD内的匀强电场,换为垂直纸面向里的匀强磁场,且离子恰能从QN板下端飞出QNCD区域,求磁场磁感应强度B。
如图所示,质量为10kg的物体A拴在一个被水平拉伸的弹簧一端,弹簧的拉力为5N时,物体A和小车均处于静止状态.若小车以1m/s2的加速度向右加速运动后,则(g=10m/s2)
A.物体A相对小车向左运动 |
B.物体A受到的摩擦力减小 |
C.物体A受到的摩擦力大小不变 |
D.物体A受到的弹簧拉力增大 |
如图所示,AB是位于竖直平面内、半径R=0.5 m的圆弧形的光滑绝缘轨道,其下端点B与水平绝缘轨道平滑连接,整个轨道处在水平向左的匀强电场中,电场强度E=5×103 N/C.今有一质量为m=0.1 kg、带电荷量q=+8×10-5C的小滑块(可视为质点)从A点由静止释放.若已知滑块与水平轨道间的动摩擦因数μ=0.05,取g=10 m/s2,求:
(1) 小滑块第一次经过圆弧形轨道最低点B时对B点的压力;
(2) 小滑块运动到右侧最远处到最低点B的距离;
(3) 小滑块在水平轨道上通过的总路程。
下列说法正确的是( )
A.弹力的方向不一定与接触面垂直 |
B.两物体间的滑动摩擦力总是与物体运动方向相反 |
C.摩擦力的大小与弹力成正比 |
D.两分力大小一定,夹角越小,合力越大 |
如图,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段铺设特殊材料,调节其初始长度为l,水平轨道左侧有一轻质弹簧左端固定,弹簧处于自然伸长状态.可视为质点的小物块从轨道右侧A点以初速度v0冲上轨道,通过圆形轨道、水平轨道后压缩弹簧,并被弹簧以原速率弹回.已知R=0.4m,l=2.5m,v0=6m/s,物块质量m=1kg,与PQ段间的动摩擦因数μ=0.4,轨道其它部分摩擦不计.取g=10m/s2.求:
(1)物块经过圆轨道最高点B时对轨道的压力;
(2)物块从Q运动到P的时间及弹簧获得的最大弹性势能;
(3)物块仍以v0从右侧冲上轨道,调节PQ段的长度l,当l长度是多少时,物块恰能不脱离轨道返回A点继续向右运动.
一个重30N的物体置于斜面上,如图,斜面的倾斜角为30°,挡板竖直,不计一切摩擦.(取g=10m/s2)
(1)画出小球受力分析示意图.
(2)求出斜面和挡板对小球的作用力.
升降机地面上固定着一个倾角=37º的光滑斜面,用一条平行于斜面的细绳拴住一个质量m=2kg的小球,如图所示,当升降机以加速度a=2m/s2做竖直向上匀加速直线运动时,重力加速度g取10m/s2,,求:
(1)绳子对球的拉力T?
(2)小球对斜面的压力N?
如图所示,倾角为θ=45°的粗糙平直导轨与半径为R的光滑圆环轨道相切,切点为B,整个轨道处在竖直平面内.一质量为m的小滑块从导轨上离地面高为h=3R的D处无初速下滑并进入圆环轨道.接着小滑块从圆环最高点C水平飞出,恰好击中导轨上与圆心O等高的P点,不计空气阻力.求:
(1)滑块运动到圆环最高点C时的速度的大小;
(2)滑块运动到圆环最低点时对圆环轨道压力的大小;
(3)滑块在斜面轨道BD间运动的过程中克服摩擦力做的功。
某物理小组的同学设计了一个粗制玩具小车通过凹形桥最低点的速度的实验,所用器材有:玩具小车、压力式托盘秤、凹形桥模拟器(圆弧部分的半径为R=0.20m)。完成下列填空:
将凹形桥模拟器静置于托盘秤上,如图(a)所示,托盘秤的示数为1.00kg;
将玩具车静置于凹形桥模拟器最低点时,托盘秤的示数如图b所示,该示数为______kg;
将小车从凹形桥模拟器某一位置释放,小车经过最低点后滑向另一侧,此过程中托盘秤的最大示数为m;多次从同一位置释放小车,记录各次的m值如下表所示:
序号 |
1 |
2 |
3 |
4 |
5 |
m(kg) |
1.80 |
1.75 |
1.85 |
1.75 |
1.90 |
根据以上数据,可求出小车经过凹形桥最低点时对桥的压力为____N;小车通过最低点时的速度大小为______m/s。(重力加速度,计算结果保留2位有效数字)。
如图所示,ABCD竖直放置的光滑绝缘细管道,其中AB部分是半径为R的圆弧形管道,BCD部分是固定的水平管道,两部分管道恰好相切于B。水平面内的M、N、B三点连线构成边长为L等边三角形,MN连线过C点且垂直于BCD。两个带等量异种电荷的点电荷分别固定在M、N两点,电荷量分别为和。现把质量为、电荷量为的小球(小球直径略小于管道内径,小球可视为点电荷),由管道的A处静止释放,已知静电力常量为,重力加速度为。求:
(1)小球运动到B处时受到电场力的大小;
(2)小球运动到C处时的速度大小;
(3)小球运动到圆弧最低点B处时,小球对管道压力的大小。