高中物理

图1中A和B是真空中的两块面积很大的平行金属板、加上周期为T的交流电压,在两板间产生交变的匀强电场。已知B板电势为零,A板电势随时间变化的规律如图2所示,其中的最大值为,最小值为,在图1中,虚线MN表示与A、B板平行等距的一个较小的面,此面到A和B的距离皆为l。在此面所在处,不断地产生电量为q、质量为m的带负电的微粒,各个时刻产生带电微粒的机会均等。这种微粒产生后,从静止出发在电场力的作用下运动。设微粒一旦碰到金属板,它就附在板上不再运动,且其电量同时消失,不影响A、B板的电势,已知上述的T、、l、q和m等各量的值正好满足等式。若不计重力,不考虑微粒间的相互作用,求:(结果用q、、m、T表示)

(1)在t=0到t=这段时间内产生的微粒中到达A板的微粒的最大速度
(2)在0-范围内,哪段时间内产生的粒子能到达B板?
(3)在t=0到t=这段时间内产生的微粒中到达B板的微粒的最大速度

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示为真空示波管的示意图,电子从灯丝K发出(初速度不计),经灯丝与A板间的加速电压U1加速,从A板中心孔沿中心线KO射出,然后进入由两块平行金属板M、N形成的偏转电场中(偏转电场可视为匀强电场),电子进入偏转电场时的速度与电场方向垂直,电子经过偏转电场后打在荧光屏上的P点.已知M、N两板间的电压为U2,两板间的距离为d,板长为L1,板右端到荧光屏的距离为L2,电子质量为m,电荷量为e。求:(1)电子穿过A板时的速度大小;(2)电子从偏转电场射出时的侧移量;(3)P点到O点的距离。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,A、B为两块平行金属板,A板带正电荷、B板带负电荷.两板之间存在着匀强电场,两板间距为d、电势差为U,在B板上开有两个间距为L的小孔.C、D为两块同心半圆形金属板,圆心都在贴近B板的O′处,C带正电、D带负电.两板间的距离很近,两板末端的中心线正对着B板上的小孔,两板间的电场强度可认为大小处处相等,方向都指向O′.半圆形金属板两端与B板的间隙可忽略不计.现从正对B板小孔紧靠A板的O处由静止释放一个质量为m、电荷量为q的带正电的微粒(微粒的重力不计),问:
 
(1)微粒穿过B板小孔时的速度多大?
(2)为了使微粒能在C、D板间运动而不碰板,C、D板间的电场强度大小应满足什么条件?
(3)从释放微粒开始,求微粒通过半圆形金属板间的最低点P点的时间?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,充电后的平行板电容器水平放置,电容为C,极板间距离为d,上极板正中有一小孔。质量为m、电荷量为+q的小球从小孔正上方高h处由静止开始下落,穿过小孔到达下极板处速度恰为零(空气阻力忽略不计,极板间电场可视为匀强电场,重力加速度为g)。求:

(1)小球到达小孔处的速度;
(2)极板间电场强度大小和电容器所带电荷量;

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

静电场方向平行于x轴,以坐标原点为中心,其电势随x的分布如图所示,图中和d为已知量。一个带负电的粒子仅在电场力作用下,以坐标原点O为中心沿x轴方向在A、B之间做周期性运动。己知该粒子质量为m、电量为-q,经过坐标原点时速度为v。求
 
(1)粒子在电场中所受电场力的大小。
(2)A点离坐标原点O的距离。
(3)粒子的运动周期。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,一质量为m=×10﹣2kg,带电量为q=10﹣6C的小球(可视为质点),用绝缘细线悬挂在水平向右的匀强电场中的定点O,设电场足够大,静止时悬线向右与竖直方向成30°角.重力加速度g=10m/s2. 则:

(1)求电场强度E;
(2)若在某时刻将细线突然剪断,设定点O距离地面的竖直高度为H=10m,绳长L=m,求小球的落地时间(小球在运动过程电量保持不变).

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,两块平行金属极板MN水平放置,板长L=1 m.间距d= m,两金属板间电压UMN=1×104 V;在平行金属板右侧依次存在ABC和FGH两个全等的正三角形区域,正三角形ABC内存在垂直纸面向里的匀强磁场B1,三角形的上顶点A与上金属板M平齐,BC边与金属板平行,AB边的中点P恰好在下金属板N的右端点;正三角形FGH内存在垂直纸面向外的匀强磁场B2.已知A、F、G处于同一直线上,B、C、H也处于同一直线上.AF两点的距离为 m.现从平行金属板MN左端沿中心轴线方向入射一个重力不计的带电粒子,粒子质量m=3×10-10 kg,带电荷量q=+1×10-4 C,初速度v0=1×105 m/s.

(1)求带电粒子从电场中射出时的速度v的大小和方向;
(2)若带电粒子进入中间三角形区域后垂直打在AC边上,求该区域的磁感应强度B1
(3)若要使带电粒子由FH边界进入FGH区域并能再次回到FH界面,求B2应满足的条件.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,BC是半径为R的圆弧形的光滑且绝缘的轨道,位于竖直平面内,其下端与水平绝缘轨道平滑连接,整个轨道处在水平向左的匀强电场中,电场强度为E.今有一质量为m、带正电q的小滑块(体积很小可视为质点),从C点由静止释放,滑到水平轨道上的A点时速度减为零.若已知滑块与水平轨道间的动摩擦因数为μ,求:

(1)滑块通过B点时的速度大小Vb
(2)水平轨道上A、B两点之间的距离S?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

质量为m的带电小球用细绳系住悬挂于匀强电场中,如图所示,静止时θ角为60°,求:

(1)小球带何种电性.
(2)若将绳烧断后,2s末小球的速度是多大.(g取10m/s2

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,在两条平行的虚线内存在着宽度为L、电场强度为E的匀强电场,在与右侧虚线相距也为L处有一与电场平行的屏.现有一电荷量为+q、质量为m的带电粒子(重力不计),以垂直于电场线方向的初速度v0射入电场中,v0方向的延长线与屏的交点为O.试求:
(1)粒子从射入电场到打到屏上所用的时间.
(2)粒子刚射出电场时的速度方向与初速度方向间夹角的正切值tan α;
(3)粒子打在屏上的点P到O点的距离Y.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在相互垂直的匀强电场和匀强磁场中,有一倾角为θ,足够长的光滑绝缘斜面,磁感应强度为B,方向垂直纸面向外,电场方向竖直向上.有一质量为m,带电量为十q的小球静止在斜面顶端,这时小球对斜面的正压力恰好为零,如图所示,若迅速把电场方向反转竖直向下,小球能在斜面上连续滑行多远?所用时间是多少?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,A、B为真空中相距为d的一对平金属板,两板间的电压为U,一电子以v0的速度从带负电A板小孔与板面垂直地射入电场中。已知电子的质量为m,电子的电荷量为e。求:

(1)电子从B板小孔射出时的速度大小;
(2)电子离开电场时所需要的时间;

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,真空中水平放置的电容C=2.3×10-11 F的平行板电容器,原来AB两板不带电,B极板接地,它的极板是边长L="0.1" m的正方形,两板间的距离d="0.4" cm,现有很多质量m=2.8×10-9 kg、带电荷量q=+1.4×10-11 C的微粒,以相同的初速度依次从两板中央平行于极板射入,由于重力作用第一个微粒恰好能落到A板上的中点O处,设微粒落到极板上后,所带电荷全部转移到极板上,取静电力常量k=9×109 N·m2/C2,g="10" m/s2,π=3。

(1)求带电粒子初速度的大小。
(2)至少射入几个微粒后,微粒才可以从该电容器穿出?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

一电路如图所示,电源电动势,内阻,电阻,C为平行板电容器,其电容C=3.0pF,虚线到两极板距离相等,极板长,两极板的间距

(1)若开关S处于断开状态,则当其闭合后,求流过R4的总电量为多少?
(2)若开关S断开时,有一带电微粒沿虚线方向以的初速度射入C的电场中,刚好沿虚线匀速运动,问:当开关S闭合后,此带电微粒以相同初速度沿虚线方向射入C的电场中,能否从C的电场中射出?(要求写出计算和分析过程,g取

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

电路如图所示,电源电动势E=28 V,内阻r=2 Ω,电阻R1=12 Ω,R2=R4=4Ω,R3=8Ω,C为平行板电容器,其电容C=3.0 pF,虚线到两极板距离相等,极板长l=0.20 m,两极板的间距d=1.0×10-2 m。

(1)若开关S处于断开状态,则当其闭合后,求流过R4的总电量为多少?
(2)若开关S断开时,有一带电微粒沿虚线方向以v0=2.0 m/s的初速度射入C的电场中,刚好沿虚线匀速运动,问:当开关S闭合后,此带电微粒以相同初速度沿虚线方向射入C的电场中,能否从C的电场中射出?(要求写出计算和分析过程,g取10m/s2)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

高中物理等势面计算题