在xOy平面内,有沿y轴负方向的匀强电场,场强大小为E(图象未画出),由A点斜射出一质量为m、带电量为+q的粒子,B和C是粒子运动轨迹上的两点,如图所示,其中l0为常数,粒子所受重力忽略不计,求:
(1)粒子从A到C过程中电场力对它做的功;
(2)粒子从A到C过程所经历的时间;
(3)粒子经过C点时的速率.
如图,静止于A处的离子,经电压为U的加速电场加速后沿图中圆弧虚线通过静电分析器,从P点垂直CN进入矩形区域的有界匀强电场,电场方向水平向左.静电分析器通道内有均匀辐向分布的电场,已知圆弧所在处场强为E0,方向如图所示;离子质量为m、电荷量为q;=2d、=3d,离子重力不计.
(1)求圆弧虚线对应的半径R的大小;
(2)若离子恰好能打在NQ的中点上,求矩形区域QNCD内匀强电场场强E的值;
(3)若撤去矩形区域QNCD内的匀强电场,换为垂直纸面向里的匀强磁场,要求离子能最终打在QN上,求磁场磁感应强度B的取值范围.
如图所示,水平放置的平行板电容器两板间距为d=8 cm,板长为L=25 cm,接在直流电源上,有一带电液滴以v0=0.5 m/s的初速度从板间的正中点水平射入,恰好做匀速直线运动,当它运动到P处时迅速将下板向上提起,液滴刚好从金属板末端飞出,求:
(1)下极板上提后液滴经过P点以后的加速度大小(g取10m/s2);
(2)液滴从射入开始匀速运动到P点所用时间.
如图所示,在空间中取直角坐标系xOy,在第一象限内从y轴到MN之间的区域充满一个沿y轴正方向的匀强电场,MN为电场的理想边界,场强大小为E1,ON=d.在第二象限内充满一个沿x轴负方向的匀强电场,场强大小为E2.电子从y轴上的A点以初速度v0沿x轴负方向射入第二象限区域,它到达的最右端为图中的B点,之后返回第一象限,且从MN上的P点离开.已知A点坐标为(0,h).电子的电量为e,质量为m,电子的重力忽略不计,求:
(1)电子从A点到B点所用的时间;
(2)P点的坐标;
(3)电子经过x轴时离坐标原点O的距离.
如图所示,质量为5 x10-8kg的带电粒子以2m/s的速度从水平放置的平行金属板A、B中央飞入电场,已知板长10cm,板间距离2 cm,当A、B间电势差UAB=103V时,带电粒子恰好沿直线穿过电场.求:
(1)带电粒子的电性和所带电荷量;
(2)A、B间所加电压在什么范围均带电粒子能从板间飞出?
如图所示,在光滑绝缘水平面上,用长为2L的绝缘轻杆连接两个质量均为m的带电小球A和B.A球的带电量为+2q,B球的带电量为-3q,两球组成一带电系统.虚线MN与PQ平行且相距3L,开始时A和B分别静止于虚线MN的两侧,虚线MN恰为AB两球连线的垂直平分线.若视小球为质点,不计轻杆的质量,在虚线MN、PQ间加上水平向右的匀强电场后,系统开始运动.已知MN、PQ间电势差为U.试求:
(1)B球刚进入电场时,带电系统的速度大小;
(2)带电系统从静止开始向右运动的最大距离和此过程中B球电势能的变化量;
(3)带电系统从静止开始向右运动至最大距离处的时间.
如图甲所示,A和B是真空中、两块面积很大的平行金属板,O是一个可以连续产生粒子的粒子源,O到A、B的距离都是l.现在A、B之间加上电压,电压UAB随时间变化的规律如图乙所示.已知粒子源在交变电压的一个周期内可以均匀产生300个粒子,粒子质量为m、电荷量为-q.这种粒子产生后,在电场力作用下从静止开始运动.设粒子一旦磁到金属板,它就附在金属板上不再运动,且电荷量同时消失,不影响A、B板电势.不计粒子的重力,不考虑粒子之间的相互作用力.已知上述物理量l=0.6m,U0=1.2×103V,T=1.2×10-2s,m=5×10-10kg,q=1×10-7C.
(1)在t=0时刻出发的微粒,会在什么时刻到达哪个极板?
(2)在t=0到t=T/2这段时间内哪个时刻产生的微粒刚好不能到达A板?
(3)在t=0到t=T/2这段时间内产生的微粒有多少个可到达A板?
竖直放置的两块足够长的平行金属板间有匀强电场.其电场强度为E,在该匀强电场中,用丝线悬挂质量为m的带电小球,丝线跟竖直方向成θ角时小球恰好平衡,如图所示,请问:
(1)小球带电荷量是多少?
(2)若剪断丝线,小球碰到金属板需多长时间?
如图,在两水平极板间存在匀强电场和匀强磁场,电场方向竖直向下,磁场方向垂直于纸面向里。一带电粒子以某一速度沿水平直线通过两极板。若不计重力,下列四个物理量中哪一个改变时,粒子运动轨迹不会改变?( )
A.粒子速度的大小 |
B.粒子所带电荷量 |
C.电场强度 |
D.磁感应强度 |
在竖直向下的匀强电场中有一带负电的小球,自绝缘斜面的A点由静止开始滑下,接着通过绝缘的离心轨道的最高点B.已知小球的质量为m,带电荷量大小为q,圆弧轨道半径为R,匀强电场场强为E,且mg>Eq,运动中摩擦阻力及空气阻力不计,求:
(1)小球能运动到B点速度至少为多少?
(2)A点距地面的高度h至少应为多少?
如图所示装置中,AB是两个竖直放置的平行金属板,在两板中心处各开有一个小孔,板间距离为d,板长也为d,在两板间加上电压U后,形成水平向右的匀强电场.在B板下端(紧挨B板下端,但未接触)固定有一个点电荷Q,可以在极板外的空间形成电场.紧挨其下方有两个水平放置的金属极板CD,板间距离和板长也均为d,在两板间加上电压U后可以形成竖直向上的匀强电场.某时刻在O点沿中线OO'由静止释放一个质量为m,带电量为q的正粒子,经过一段时间后,粒子从CD两极板的正中央进入电场,最后由CD两极板之间穿出电场.不计极板厚度及粒子的重力,假设装置产生的三个电场互不影响,静电力常量为k.求:
(1)粒子经过AB两极板从B板飞出时的速度大小;
(2)在B板下端固定的点电荷Q的电性和电量;
(3)粒子从CD两极板之间飞出时的位置与释放点O之间的距离.
如图所示,匀强电场中有一直角三角形ABC,∠ACB=90°,∠ABC=30°,BC=20cm已知电场线的方向平行于三角形ABC所在平面。将电荷量q=2×10-5C的正电荷从A移到B点电场力做功为零,从B移到C点克服电场力做功1.0×10-3J。试求:
(1)该电场的电场强度大小和方向;
(2)若将C点的电势规定为零时,B点的电势。
如图甲所示,在直角坐标系0≤x≤L区域内有沿y轴正方向的匀强电场,场强大小 ,右侧有一个以点(3L,0)为中心、边长为2L的正方形区域,其边界ab与x轴平行,正方形区域与x轴的交点分别为M、N。现有一质量为m,带电量为e的电子,从y轴上的A点以速度v0沿x轴正方向射入电场,飞出电场后从M点进入正方形区域。
(1)求电子进入正方形磁场区域时的速度v;
(2)在正方形区域加垂直纸面向里的匀强磁场B,使电子从正方形区域边界点d点射出,则B的大小为多少;
(3)若当电子到达M点时,在正方形区域加如图乙所示周期性变化的磁场(以垂直于纸面向外为磁场正方向),最后电子运动一段时间后从N点飞出,速度方向与电子进入磁场时的速度方向相同,求正方形磁场区域磁感应强度B0的大小、磁场变化周期T各应满足的表达式。
一个带正电的微粒,从A点射入水平方向的匀强电场中,微粒沿直线AB运动,如图,AB与电场线夹角θ=30°,已知带电微粒的质量m=1.0×10-7kg,电量q=1.0×10-10C,A、B相距L=20cm。(取g=10m/s2,结果保留二位有效数字)求:
(1)说明微粒在电场中运动的性质,要求说明理由
(2)电场强度的大小和方向?
(3)要使微粒从A点运动到B点,微粒射入电场时的最小速度是多少?