如图所示,水平地面上有一上表面光滑的长木板C(其左端有一竖直小挡板),其上放有可视为质点的两小物块A和B,其间夹有一根长度可忽略的轻弹簧,弹簧与物块间不相连,其中小物块B距离木板C的右端很近。已知mA=mB="4.0kg," mC=1.0kg地面与木板C间的动摩擦因数为μ=0.20,重力加速度为g=10m/s2。开始时整个装置保持静止,两个小物块A、B将轻质弹簧压紧使弹簧贮存了弹性势能E0=100J。某时刻同时释放A、B,则:
(1)当小物块B滑离木板最右端时,求两小物块的速度魄vA、vB;
(2)若小物块A与挡板的碰撞时间极短且无机械能损失,求在它们第一次碰撞的过程中小物块A对挡板的冲量大小;
(3)在小物块A与挡板第一次碰撞到第二次碰撞的过程中,求木板C的位移大小。
如图所示,光滑固定轨道的两端都是半径为R的四分之一圆弧,在轨道水平面上有两个质量均为m的小球B、C,B、C用一长度锁定不变的轻小弹簧栓接,弹性势能.一质量也为m的小球A从左侧的最高点自由滑下,A滑到水平面与B碰后立即粘在一起结合成D就不再分离(碰撞时间极短).当D、C一起刚要滑到右侧最低点时,弹簧锁定解除且立即将C弹出并与弹簧分离.求
(1)弹簧锁定解除前瞬间,D、C速度大小
(2)弹簧锁定解除后,C第一次滑上轨道右侧圆弧部分的轨迹所对的圆心角
(3)弹簧锁定解除后,若C、D(含弹簧)每次碰撞均在水平面;求第N次碰撞结束时,C、D的速度
如图所示,高为0.5m、倾角为300的斜面ABC固定在水平地面上,一根不可伸长的柔软轻绳跨过斜面上的轻质定滑轮,绳两端各系一小物块a和b。a的质量为m,置于水平地面上;b的质量为4m,置于斜面上用手托住,距斜面底端A处挡板的距离为d=0.25m,此时轻绳刚好拉紧,现从静止释放物块b,b与挡板碰撞后速度立刻变为零。求从静止开始释放b后,a可能达到的最大高度。(g=10m/s2)(不计一切摩擦)
如图,质量分别为mA、mB的两个弹性小球A、B静止在地面上方,B球距离地面的高度h=0.8m,A球在B球的正上方。先将B球释放,经过一段时间后再将A球释放。当A球下落t=0.3s时,刚好与B球在地面上方的P点处相碰,碰撞时间极短,碰后瞬间A球的速度恰好为零。已知mB=3mA,重力加速度大小g=10m/s2,忽略空气阻力及碰撞中的动能损失。求
(1)B球第一次到达地面时的速度;
(2)P点距离地面的高度。
如下图所示,光滑的水平面AB与半径为R=0.32 m的光滑竖直半圆轨道BCD在B点相切,D为轨道最高点.用轻质细线连接甲、乙两小球,中间夹一轻质弹簧,弹簧与甲、乙两球不拴接.甲球的质量为m1=0.1 kg,乙球的质量为m2=0.3 kg,甲、乙两球静止在光滑的水平面上.现固定甲球,烧断细线,乙球离开弹簧后进入半圆轨道恰好能通过D点.重力加速度g取10 m/s2,甲、乙两球可看作质点。
(1)试求细线烧断前弹簧的弹性势能;
(2)若甲球不固定,烧断细线,求乙球离开弹簧后进入半圆轨道能达到的最大高度;
(3)若给甲、乙两球一向右的初速度v0的同时烧断细线,乙球离开弹簧后进入半圆轨道仍恰好能通过D点,求v0的大小。
如图所示,长木板A上右端有一物块B,它们一起在光滑的水平面上向左做匀速运动,速度v0=2m/s。木板左侧有一个与木板A等高的固定物体C。已知长木板A的质量为mA=1.0kg,物块B的质量为mB=3.0kg,物块B与木板A间的动摩擦因数μ=0.5,取g=10m/s2。
(1)若木板A足够长,A与C第一次碰撞后,A立即与C粘在一起,求物块 B在木板A上滑行的距离L应是多少;
(2)若木板足够长,A与C发生碰撞后弹回(碰撞时间极短,没有机械能损失),求第一次碰撞后A、B具有共同运动的速度v;
(3)若木板A长为0.48m,且A与C每次碰撞均无机械能损失,求A与C碰撞几次,B可脱离A?
如图所示三个小球质量均为m,B、C两球用轻弹簧连接后放在光滑水平面上,A球以速度沿B、C两球的球心连线向B球运动,碰后A、B两球粘在一起。问:
(1)A、B两球刚刚粘合在一起时的速度是多大?
(2)弹簧压缩至最短时三个小球的速度是多大?
(3)弹簧压缩至最短时弹簧的弹性势能.
如图所示,半径为的 1/4光滑圆弧轨道最低点D与水平面相切,在D点右侧处用长为的细绳将质量为的小球B(可视为质点)悬挂于O点,小球B的下端恰好与水平面接触,质量为的小球A(可视为质点)自圆弧轨道C的正上方H高处由静止释放,恰好从圆弧轨道的C点切入圆弧轨道,已知小球A与水平面间的动摩擦因数,细绳的最大张力,重力加速度为,试求:
(1)若,小球A到达圆弧轨道最低点D时所受轨道的支持力;
(2)试讨论在什么范围内,小球A与B发生弹性碰撞后细绳始终处于拉直状态。
如图所示,在水平面上有一弹簧,其左端与墙壁相连,O点为弹簧原长位置,O点左侧水平面光滑,水平段OP长L=1m,P点右侧一与水平方向成的足够长的传送带与水平面在P点平滑连接,皮带轮逆时针转动速率为3m/s,一质量为1kg可视为质点的物块A压缩弹簧(与弹簧不栓接),使弹簧获得弹性势能,物块与OP段动摩擦因数,另一与A完全相同的物块B停在P点,B与传送带的动摩擦因数,传送带足够长,A与B的碰撞时间不计,碰后A.B交换速度,重力加速度,现释放A,求:
(1)物块A.B第一次碰撞前瞬间,A的速度
(2)从A.B第一次碰撞后到第二次碰撞前,B与传送带之间由于摩擦而产生的热量
(3)A.B能够碰撞的总次数
如图所示,距离为L的两块平行金属板A、B竖直固定在表面光滑的绝缘小车上,并与车内电动势为U的电池两极相连,金属板B下开有小孔,整个装置质量为M,静止放在光滑水平面上,一个质量为m带正电q的小球以初速度v0沿垂直于金属板的方向射入小孔,若小球始终未与A板相碰,且小球不影响金属板间的电场.
(1)当小球在A、 B板之间运动时,车和小球各做什么运动?加速度各是多少?
(2)假设小球经过小孔时系统电势能为零,则系统电势能的最大值是多少?从小球刚进入小孔,到系统电势能最大时,小车和小球相对于地面的位移各是多少?
如图所示,在水平桌面上放有长木板C,C上右端是固定挡板P,在C上左端和中点处各放有小物块A和B,A、B的尺寸以及P的厚度皆可忽略不计,A、B之间和B、P之间的距离都为L.设木板C和桌面之间无摩擦,A、C和B、C之间的动摩擦因数都为,最大静摩擦力等于滑动摩擦力大小,A、B、C(连同挡板P)的质量都为,开始时,B和C静止,A以某一初速度向右运动,重力加速度为.求:
(1)A和B发生碰撞前,B受到的摩擦力大小?
(2)A和B能够发生碰撞时,A的初速度应满足的条件?
(3)B和P能够发生碰撞时,A的初速度应满足的条件(已知A、B碰撞无机械能损失.)
如图所示,竖直面内有半径为R=1.25m的光滑四分之一圆弧PQ,其中Q点为圆弧与光滑绝缘的水平面QN相切的圆弧上的点。PQ中的QM段长L1未知,MN段长L2=5m,其所在区域有水平向右的匀强电场E,N处有一弹性挡板,物体与其相撞无能量损失。质量都为m=1kg的A、B滑块分别在P、M点上,其中B带正电,电量为q。现自由释放A,当其运动到Q点时,给B一水平向右的初速度v0=3m/s。已知A、B相碰会粘合在一起,g取10m/s2,m/s2,。
(1)求A运动到Q点时轨道对A的支持力N的大小;
(2)L1取某值时,滑块A能返回弧面,且有最大上升高度h,求L1和h;
(3)L1取何值时,滑块A、B被约束在电场区域内。
质量为M="6" kg的木板B静止于光滑水平面上,物块A质量为6 kg,停在B的左端。质量为1 kg的小球用长为0. 8 m的轻绳悬挂在固定点O上,将轻绳拉直至水平位置后,由静止释放小球,小球在最低点与A发生碰撞后反弹,反弹所能达到的最大高度为0.2 m,物块与小球可视为质点,不计空气阻力。已知A、B间的动摩擦因数,为使A、B达到共同速度前A不滑离木板,木板至少多长?
如图(a)所示,有两级光滑的绝缘平台,高一级平台距离绝缘板的中心O的高度为h,低一级平台高度是高一级平台高度的一半.绝缘板放在水平地面上,板与地面间的动摩擦因数为μ,一轻质弹簧一端连接在绝缘板的中心,另一端固定在墙面上。边界GH左边存在着正交的匀强电场和变化的磁场,电场强度为E,磁感应强度变化情况如图(b)所示,磁感应强度大小均为B.有一质量为m、带负电的小球从高一级平台左边缘以一定初速滑过平台后在t=0时刻垂直于边界GH进入复合场中,设小球刚进入复合场时磁场方向向外且为正值.小球做圆周运动至O点处恰好与绝缘板发生弹性碰撞,碰撞后小球立即垂直于边界GH返回并滑上低一级平台,绝缘板从C开始向右压缩弹簧的最大距离为S到达D,求:
⑴ 磁场变化的周期T;
⑵ 小球从高一级平台左边缘滑出的初速度v;
⑶ 绝缘板的质量M;
⑷ 绝缘板压缩弹簧具有的弹性势能EP.
如图所示,在倾角θ=30º的斜面上放置一段凹槽B,B与斜面间的动摩擦因数μ=,槽内靠近右侧壁处有一小物块A(可视为质点),它到凹槽左侧壁的距离d=0.10m。A、B的质量都为m=2.0kg,B与斜面间的最大静摩擦力可认为等于滑动摩擦力,不计A、B之间的摩擦,斜面足够长。现同时由静止释放A、B,经过一段时间,A与B的侧壁发生碰撞,碰撞过程不计机械能损失,碰撞时间极短。取g=10m/s2。求:
(1)物块A和凹槽B的加速度分别是多大;
(2)物块A与凹槽B的左侧壁第一次碰撞后瞬间A、B的速度大小;
(3)从初始位置到物块A与凹槽B的左侧壁发生第三次碰撞时B的位移大小。