某人造地球卫星绕地球做匀速圆周运动,它离地面的高度为地球半径R的3倍,已知地面附近的重力加速度为g,引力常量为G.求:
(1)地球的质量;
(2)这颗人造地球卫星的向心加速度和周期.
2013年6月,我国成功实现目标飞行器“神舟十号”与轨道空间站“天宫一号”的对接.如图所示,已知“神舟十号”从捕获“天宫一号”到实现对接用时t,这段时间内组合体绕地球转过的角度为θ(此过程轨道不变,速度大小不变),地球半径为R,地球表面重力加速度为g,万有引力恒量G,不考虑地球自转;求:(1)地球质量M;(2)组合体运动的周期T;(3)组合体所在圆轨道离地高度H。
嫦娥三号将于今年12月发射,嫦娥三号及其月球车实现一系列重大突破,将完成在月球表面软着陆和巡视探测,实现中华民族五千年来九天揽月的梦想.一位勤于思考的同学为探月机械人设计了如下实验:在月球表面以初速度v0竖直上抛出一个物体,测得物体的经过t时间落回.通过查阅资料知道月球的半径为R,引力常量为G,若物体只受月球引力的作用,上抛高度很小.求:
(1)月球的质量
(2)嫦娥三号在距月球表面高R处绕月球圆周运行的速率.
某星球半径为R =" 6×" 106 m,假设该星球表面上有一倾角为θ = 30°的固定斜面,一质量为m =" 1" kg的小物块在力,作用下从静止开始沿斜面向上运动,力F始终与斜面平行,如图甲所示。已知小物块和斜面间的动摩擦因数,力F随位移x变化的规律如图乙所示(取沿斜面向上的方向为正向),如果小物块运动12 m时速度恰好为零,已知万有引力常量G =" 6.67" × 10-11 N·m2/kg2。试求:(计算结果保留一位有效数字)
(1)该星球表面上的重力加速度g的大小;
(2)该星球的平均密度。
中子星是恒星演化过程的一种可能结果,它的密度很大。现有一中子星,观测到它的自转周期为T=s。问该中子星的最小密度应是多少才能维持该星的稳定,不致因自转而瓦解。计算时星体可视为均匀球体。(引力常数G=6.6710m/kg.s)
有些航空母舰上装有帮助飞机起飞的弹射系统,已知某型号的舰载飞机在跑道上加速时可能产生的最大加速度为5m/s2,当飞机的速度达到50m/s时才能离开航空母舰起飞,设航空母舰处于静止状态.问:
(1)若要求该飞机滑行160m后起飞,弹射系统必须使飞机具有多大的初速度?
(2)若航空母舰上不装弹射系统,设航空母舰甲板长为L=160m,为使飞机仍能此舰上正常起飞,这时可以先让航空母舰沿飞机起飞方向以某一速度匀速航行,则这个速度至少为多少?
经过用天文望远镜长期观测,人们在宇宙中已经发现了许多双星系统,通过对它们的研究,使我们对宇宙中物质的存在形式和分布情况有了较深刻的认识,双星系统由两个星体组成,其中每个星体的线度都远小于两星体之间的距离,一般双星系统距离其他星体很远,可以当做孤立系统来处理。现根据对某一双星系统的光度学测量确定,该双星系统中每个星体的质量都是M,两者相距L,它们正围绕两者连线的中点做圆周运动。试求:
(1)该双星系统的运动周期;
(2)若该实验中观测到的运动周期为T观测,且。为了理解T观测 与T计算的不同,目前有一种流行的理论认为,在宇宙中可能存在一种望远镜观测不到的暗物质。作为一种简化模型,我们假定在以这两个星体连线为直径的球体内均匀分布这种暗物质。若不考虑其他暗物质的影响,根据这一模型和上述观测结果确定该星系间这种暗物质的密度。
两颗卫星在同一轨道平面绕地球做匀速圆周运动,地球半径为R,a卫星离地面的高度等于R,a卫星离地面高度为3R,则
(1)a、b两卫星周期之比Ta∶Tb是多少?
(2)若某时刻两卫星正好同时通过地面同一点的正上方,则a至少经过多少个周期两卫星相距最远?
如图所示为我国“嫦娥一号卫星”从发射到进入月球工作轨道的过程示意图。
在发射过程中经过一系列的加速和变轨,卫星沿绕地球“48小时轨道”在抵达近地点P时,主发动机启动,“嫦娥一号卫星”的速度在很短时间内由v1提高到v2,进入“地月转移轨道”,开始了从地球向月球的飞越。“嫦娥一号卫星”在“地月转移轨道”上经过114小时飞行到达近月点Q时,需要及时制动,使其成为月球卫星。之后,又在绕月球轨道上的近月点Q经过两次制动,最终进入绕月球的圆形工作轨道I。已知“嫦娥一号卫星”质量为m0,在绕月球的圆形工作轨道I上运动的周期为T,月球的半径r月,月球的质量为m月,万有引力恒量为G。
(1)求卫星从“48小时轨道”的近地点P进入“地月转移轨道”过程中主发动机对“嫦娥一号卫星”做的功(不计地球引力做功和卫星质量变化);
(2)求“嫦娥一号卫星”在绕月球圆形工作轨道I运动时距月球表面的高度;
(3)理论表明:质量为m的物体由距月球无限远处无初速释放,它在月球引力的作用下运动至距月球中心为r处的过程中,月球引力对物体所做的功可表示为。为使“嫦娥一号卫星”在近月点Q进行第一次制动后能成为月球的卫星,且与月球表面的距离不小于圆形工作轨道I的高度,最终进入圆形工作轨道,其第一次制动后的速度大小理论上应满足什么条件?
质量为m的卫星发射前静止在地球赤道表面。假设地球可视为质量均匀分布的球体,半径为R。
(1)已知地球质量为M,自转周期为T,引力常量为G。求此时卫星对地表的压力N的大小;
(2)卫星发射后先在近地轨道上运行(轨道离地面的高度可以忽略不计),运行的速度大小为v1,之后经过变轨成为地球的同步卫星,此时离地面高度为H,运行的速度大小为v2。
a.求比值;
b.若卫星发射前随地球一起自转的速度大小为v0,通过分析比较v0、 v1、v2三者的大小关系。
(由于地球自转的影响,地球表面的重力加速度会随纬度的变化而有所不同:若地球表面两极处的重力加速度大小为g0,在赤道处的重力加速度大小为g,地球自转的周期为T,引力常量为G,地球可视为质量均匀分布的球体。求: (1)地球半径R;(2)地球的平均密度;
(3)若地球自转速度加快,当赤道上的物体恰好能“飘”起来时,求地球自转周期T'。
若“嫦娥”探月卫星为绕月球地卫星,利用该卫星可对月球进行成像探测。已知卫星距离月球表面高为h,绕行周期为T,月球绕地球公转的周期为T0,月球绕地球公转的轨道半径为R0,地球半径为R,月球半径为r,引力常量为G,光速为c,月球绕地球及卫星绕月球均做匀速圆周运动。求:
(1)地球的质量M和月球的质量m及月球的第一宇宙速度v;
(2)如图所示,当绕月球地轨道的平面与月球绕地球公转的轨道平面垂直(即与地心到月心的连线垂直)时,绕月球地卫星向地球地面发送照片需要的最短时间t。
一个质量为1500 kg行星探测器从某行星表面竖直升空,发射时发动机推力恒定,发射升空后8 s末,发动机突然间发生故障而关闭;如图所示为探测器从发射到落回出发点全过程的速度图象;已知该行星表面没有大气,不考虑探测器总质量的变化;求:
(1)探测器在行星表面上升达到的最大高度;
(2)探测器落回出发点时的速度;
(3)探测器发动机正常工作时的推力。
质量为100 kg行星探测器从某行星表面竖直发射升空,发射时发动机推力恒定,发射升空后8 s末,发动机突然间发生故障而关闭,探测器从发射到落回出发点全过程的速度图象如图所示。已知该行星半径是地球半径的,地球表面重力加速度为10m/s2,该行星表面没有大气,不考虑探测器总质量的变化。求:
(1)探测器发动机推力大小;
(2)该行星的第一宇宙速度大小。