有人设想:可以在飞船从运行轨道进入返回地球程序时,借飞船需要减速的机会,发射一个小型太空探测器,从而达到节能的目的。如图所示,飞船在圆轨道Ⅰ上绕地球飞行,其轨道半径为地球半径的k倍(k>1)。当飞船通过轨道Ⅰ的A点时,飞船上的发射装置短暂工作,将探测器沿飞船原运动方向射出,并使探测器恰能完全脱离地球的引力范围,即到达距地球无限远时的速度恰好为零,而飞船在发射探测器后沿椭圆轨道Ⅱ向前运动,其近地点B到地心的距离近似为地球半径R。以上过程中飞船和探测器的质量均可视为不变。已知地球表面的重力加速度为g。
(1)求飞船在轨道Ⅰ运动的速度大小;
(2)若规定两质点相距无限远时引力势能为零,则质量分别为M、m的两个质点相距为r时的引力势能,式中G为引力常量。在飞船沿轨道Ⅰ和轨道Ⅱ的运动过程,其动能和引力势能之和保持不变;探测器被射出后的运动过程中,其动能和引力势能之和也保持不变。
①求探测器刚离开飞船时的速度大小;
②已知飞船沿轨道Ⅱ运动过程中,通过A点与B点的速度大小与这两点到地心的距离成反比。根据计算结果说明为实现上述飞船和探测器的运动过程,飞船与探测器的质量之比应满足什么条件。
2003年10月15日,我国神舟五号载人飞船成功发射.标志着我国的航天事业发展到了一个很高的水平.飞船在绕地球飞行的第5圈进行变轨,由原来的椭圆轨道变为距地面高度为R的圆形轨道.已知地球半径为R,地面处的重力加速度为g,引力常量为G,求:
⑴地球的质量;
⑵飞船在上述圆形轨道上运行的周期T.
2015年8月27日10时31分,我国在太原卫星发射中心用长征四号丙运载火箭,成功将遥感二十七号卫星送人太空。若遥感二十七卫星到地面的距离等于地球的半径R,已 知地球表面的重力加速度为g。求遥感二十七号卫星的周期T。
某星球半径为R =" 6×" 106 m,假设该星球表面上有一倾角为θ = 30°的固定斜面,一质量为m =" 1" kg的小物块在力,作用下从静止开始沿斜面向上运动,力F始终与斜面平行,如图甲所示。已知小物块和斜面间的动摩擦因数,力F随位移x变化的规律如图乙所示(取沿斜面向上的方向为正向),如果小物块运动12 m时速度恰好为零,已知万有引力常量G =" 6.67" × 10-11 N·m2/kg2。试求:(计算结果保留一位有效数字)
(1)该星球表面上的重力加速度g的大小;
(2)该星球的平均密度。
在某星球上,宇航员做了一个实验:让质量为m="1." 0 kg的小滑块以v0="6" m/s的初速度从倾角为θ= 530的斜面AB的顶点A滑下,到达B点后与垂直斜面的挡板碰撞,不计碰撞时的机械能损失.滑块与斜面间的动摩擦因数为=" 0." 5,测得A点离B点所在水平面的高度为h=3m,最终物块在斜面上通过的路程s =" 20" m.已知sin 530 =" 0." 8 ,cos 530="0." 6,不计该星球的自转以及其他星球对它的作用.
(1)求该星球表面的重力加速度g;
(2)若测得该星球的半径为R=6106 m,则该星球的第一宇宙速度为多大?
(3)取地球半径Ro=6.4106m,地球表面的重力加速度g0=10 m/s2,求该星球的平均密度与地球的平均密度之比.
如图所示为我国“嫦娥一号卫星”从发射到进入月球工作轨道的过程示意图。
在发射过程中经过一系列的加速和变轨,卫星沿绕地球“48小时轨道”在抵达近地点P时,主发动机启动,“嫦娥一号卫星”的速度在很短时间内由v1提高到v2,进入“地月转移轨道”,开始了从地球向月球的飞越。“嫦娥一号卫星”在“地月转移轨道”上经过114小时飞行到达近月点Q时,需要及时制动,使其成为月球卫星。之后,又在绕月球轨道上的近月点Q经过两次制动,最终进入绕月球的圆形工作轨道I。已知“嫦娥一号卫星”质量为m0,在绕月球的圆形工作轨道I上运动的周期为T,月球的半径r月,月球的质量为m月,万有引力恒量为G。
(1)求卫星从“48小时轨道”的近地点P进入“地月转移轨道”过程中主发动机对“嫦娥一号卫星”做的功(不计地球引力做功和卫星质量变化);
(2)求“嫦娥一号卫星”在绕月球圆形工作轨道I运动时距月球表面的高度;
(3)理论表明:质量为m的物体由距月球无限远处无初速释放,它在月球引力的作用下运动至距月球中心为r处的过程中,月球引力对物体所做的功可表示为。为使“嫦娥一号卫星”在近月点Q进行第一次制动后能成为月球的卫星,且与月球表面的距离不小于圆形工作轨道I的高度,最终进入圆形工作轨道,其第一次制动后的速度大小理论上应满足什么条件?
未来“嫦娥五号”落月后,轨道飞行器将作为中继卫星在绕月轨道上做圆周运动,如图所示.设卫星距离月球表面高为h,绕行周期为T,已知月球绕地球公转的周期为T0,地球半径为R,地球表面的重力加速度为g,月球半径为r,万有引力常量为G.试分别求出:
(1)地球的质量和月球的质量;
(2)中继卫星向地球发送的信号到达地球,最少需要多长时间?(已知光速为c,且h≤r≤R)
宇航员站在某一星球距离地面h高度处,以初速度v沿水平方向抛出一个小球,经过时间t后小球落到星球表面,已知该星球的半径为R,引力常量为G,求:
(1)该星球表面的重力加速度g的大小;
(2)小球落地时的速度大小;
(3)该星球的密度.
由于地球自转的影响,地球表面的重力加速度会随纬度的变化而有所不同:若地球表面两极处的重力加速度大小为g0,在赤道处的重力加速度大小为g,地球自转的周期为r,引力常量为G,地球可视为质量均匀分布的球体.求:
(1)地球半径R;
(2)地球的平均密度;
(3)若地球自转速度加快,当赤道上的物体恰好能“飘”起来时,求地球自转周期T'.
(由于地球自转的影响,地球表面的重力加速度会随纬度的变化而有所不同:若地球表面两极处的重力加速度大小为g0,在赤道处的重力加速度大小为g,地球自转的周期为T,引力常量为G,地球可视为质量均匀分布的球体。求: (1)地球半径R;(2)地球的平均密度;
(3)若地球自转速度加快,当赤道上的物体恰好能“飘”起来时,求地球自转周期T'。
我国的“探月工程”计划将于2017年宇航员登上月球。若宇航员登上月球后,在距离月球水平表面h高度处,以初速度v0水平拋出一个小球,测得小球从抛出点到落月点的水平距离s。求:
(1)月球表面重力加速度的大小;
(2)小球落月时速度v的大小。
“神六升空,双雄巡天”,真正实现了中国人参与外层空间科学实验的梦想.已知地球半径为R,地球表面的重力加速度为g.
(1)飞船入轨后沿椭圆轨道运动,其远地点离地面高度为地球半径的,则该处的重力加速度是多大?
(2)假设“神舟六号”飞船绕地球飞行过程中沿圆轨道运行,周期为T,则飞船离地面的高度是多少?
黑洞是近代引力理论所预言的一种特殊天体,探寻黑洞的方案之一是观测双星系统的运动规律.天文学家观测河外星系大麦哲伦云时,发现了LMCX-3双星系统,它由可见星A和不可见的暗星B构成。两星视为质点,不考虑其它天体的影响,A、B围绕两者连线上的O点做匀速圆周运动,它们之间的距离保持不变,如图所示。引力常量为G,由观测能够得到可见星A的速率v和运行周期T。
(1)可见星A所受暗星B的引力可等效为位于O点处质量为的星体(视为质点)对它的引力,设A和B的质量分别为、,试求(用、表示);
(2)求暗星B的质量与可见星A的速率v、运行周期T和质量之间的关系式;
(3)恒星演化到末期,如果其质量大于太阳质量的2倍,它将有可能成为黑洞。若可见星A的速率v=2.7×105m/s,运行周期T=4.7π×104s,质量m1=6,试通过估算来判断暗星B有可能是黑洞吗?(G=6.67×10-11N·m2/kg2,ms=2.0×1030kg)
某人造地球卫星绕地球做匀速圆周运动,它离地面的高度为地球半径R的3倍,已知地面附近的重力加速度为g,引力常量为G.求:
(1)地球的质量;
(2)这颗人造地球卫星的向心加速度和周期.