我国“神舟”五号飞船于2003年l0月15日在酒泉航天发射场由长征二号F运载火箭成功发射升空,若长征二号F运载火箭和飞船起飞时总质量为1.0×105kg,起飞推动力为3.0×106N,运载火箭发射塔高160m,试问:(g=10m/s2)
(1)运载火箭起飞时的加速度为多大?
(2)假如运载火箭起飞时推动力不变,忽略一切阻力和运载火箭质量的变化,试确定运载火箭需经多长时间才能飞离发射塔?
(3)这段时间内飞船中的宇航员承受了多大的压力?(设宇航员的质量为65kg)
试将一天的时间记为T,地球半径记为R,地球表面重力加速度为g.(结果可保留根式)
(1)试求地球同步卫星P的轨道半径RP;
(2)若已知一卫星Q位于赤道上空且卫星Q运动方向与地球自转方向相反,赤道上一城市A的人平均每三天观测到卫星Q四次掠过他的上空,试求Q的轨道半径RQ.
有些航空母舰上装有帮助飞机起飞的弹射系统,已知某型号的舰载飞机在跑道上加速时可能产生的最大加速度为5m/s2,当飞机的速度达到50m/s时才能离开航空母舰起飞,设航空母舰处于静止状态.问:
(1)若要求该飞机滑行160m后起飞,弹射系统必须使飞机具有多大的初速度?
(2)若航空母舰上不装弹射系统,设航空母舰甲板长为L=160m,为使飞机仍能此舰上正常起飞,这时可以先让航空母舰沿飞机起飞方向以某一速度匀速航行,则这个速度至少为多少?
如右图,质量分别为m和M的两个星球A和B在引力作用下都绕O点做匀速圆周运动,星球A和B两者中心之间的距离为L。已知A、B的中心和O三点始终共线,A和B分别在O的两侧。引力常数为G。
(1)求两星球做圆周运动的周期
(2)在地月系统中,若忽略其他星球的影响,可以将月球和地球看成上述星球A和B,月球绕其轨道中心运行的周期为。但在近似处理问题时,常常认为月球是绕地心做圆周运动的,这样算得的运行周期记为。已知地球和月球的质量分别为和。求与两者平方之比。(结果保留3位小数)
“嫦娥一号”卫星开始绕地球做椭圆轨道运动,经过变轨、制动后,成为一颗绕月球做圆轨道运动的卫星.设卫星距月球表面的高度为h,做匀速圆周运动的周期为T .已知月球半径为R,引力常量为G,其中R为球的半径。求:
(1)月球的质量M及月球表面的重力加速度g;
(2)在距月球表面高度为h的地方(),将一质量为m的小球以v0的初速度水平抛出,求落地瞬间月球引力对小球做功的瞬时功率P.
我国的月球探测计划“嫦娥工程”分为“绕、落、回”三步。“嫦娥三号”的任务是“落”。2013年12月2日,“嫦娥三号”发射,经过中途轨道修正和近月制动之后,“嫦娥三号”探测器进入绕月的圆形轨道I。12月12日卫星成功变轨,进入远月点P、近月点Q的椭圆形轨道II,如图所示。2013年12月14日,“嫦娥三号”探测器在Q点附近制动,由大功率发动机减速,以抛物线路径下降到距月面100米高处进行30s悬停避障,之后再缓慢竖直下降到距月面高度仅为数米处,为避免激起更多月尘,关闭发动机,做自由落体运动,落到月球表面。
已知引力常量为G,月球的质量为M,月球的半径为R,“嫦娥三号”在轨道I上运动时的质量为m,P、Q点距月球表面的高度分别为h1、h2。
(1)求“嫦娥三号”在圆形轨道I上运动的速度大小;
(2)已知“嫦娥三号”与月心的距离为r时,引力势能为(取无穷远处引力势能为零),其中m为此时“嫦娥三号”的质量。若“嫦娥三号”在轨道II上运动的过程中,动能和引力势能相互转化,它们的总量保持不变。已知“嫦娥三号”经过Q点的速度大小为v,请根据能量守恒定律求它经过P点时的速度大小;
2003年10月15日,我国神舟五号载人飞船成功发射.标志着我国的航天事业发展到了一个很高的水平.飞船在绕地球飞行的第5圈进行变轨,由原来的椭圆轨道变为距地面高度为h的圆形轨道.已知地球半径为R,地面处的重力加速度为g,引力常量为G,求:
⑴地球的质量; ⑵飞船在上述圆形轨道上运行的周期T.
经过用天文望远镜长期观测,人们在宇宙中已经发现了许多双星系统,通过对它们的研究,使我们对宇宙中物质的存在形式和分布情况有了较深刻的认识,双星系统由两个星体组成,其中每个星体的线度都远小于两星体之间的距离,一般双星系统距离其他星体很远,可以当做孤立系统来处理。现根据对某一双星系统的光度学测量确定,该双星系统中每个星体的质量都是M,两者相距L,它们正围绕两者连线的中点做圆周运动。试求:
(1)该双星系统的运动周期;
(2)若该实验中观测到的运动周期为T观测,且。为了理解T观测 与T计算的不同,目前有一种流行的理论认为,在宇宙中可能存在一种望远镜观测不到的暗物质。作为一种简化模型,我们假定在以这两个星体连线为直径的球体内均匀分布这种暗物质。若不考虑其他暗物质的影响,根据这一模型和上述观测结果确定该星系间这种暗物质的密度。
在半径R=5000 km 的某星球表面,宇航员做了如下实验.实验装置如图甲所示,竖直平面内的光滑轨道由轨道AB和圆弧轨道BC组成,将质量m=0.2 kg 的小球从轨道AB上高H处的某点静止滑下,用力传感器测出小球经过C点时对轨道的压力F,改变H的大小,可测出相应的F大小,F随H的变化关系如图乙所示.求:
(1)圆轨道的半径.
(2)该星球的第一宇宙速度.
已知质量分布均匀的球壳对对壳内的物体的引力为0。假设地球是一半径为R的质量分布均匀的球体,地球表面的重力加速度大小为g。试求:
(1)在地面上方离地面距离为处的重力加速度大小与在地面下方地球内部离地面距离为处的重力加速度大小之比为多少?
(2)设想地球的密度不变,自转周期不变,但地球球体半径变为原来的一半,仅考虑地球和同步卫星之间的相互作用力,则该“设想地球”的同步卫星的轨道半径与以前地球的同步卫星轨道半径的比值是多少?
我国的“探月工程”计划将于2017年宇航员登上月球。若宇航员登上月球后,在距离月球水平表面h高度处,以初速度v0水平拋出一个小球,测得小球从抛出点到落月点的水平距离s。求:
(1)月球表面重力加速度的大小;
(2)小球落月时速度v的大小。
如图所示,A是地球的同步卫星.另一卫星B的圆形轨道位于赤道平面内,离地面高度为h.已知地球半径为R,地球自转角速度为ω0,地球表面的重力加速度为g,O为地球中心.
(1)求卫星B的运行周期.
(2)如卫星B绕行方向与地球自转方向相同,某时刻A、B两卫星相距最近(O、B、A在同一直线上),则至少经过多长时间,它们还能相距最近?
在某星球上,宇航员做了一个实验:让质量为m="1." 0 kg的小滑块以v0="6" m/s的初速度从倾角为θ= 530的斜面AB的顶点A滑下,到达B点后与垂直斜面的挡板碰撞,不计碰撞时的机械能损失.滑块与斜面间的动摩擦因数为=" 0." 5,测得A点离B点所在水平面的高度为h=3m,最终物块在斜面上通过的路程s =" 20" m.已知sin 530 =" 0." 8 ,cos 530="0." 6,不计该星球的自转以及其他星球对它的作用.
(1)求该星球表面的重力加速度g;
(2)若测得该星球的半径为R=6106 m,则该星球的第一宇宙速度为多大?
(3)取地球半径Ro=6.4106m,地球表面的重力加速度g0=10 m/s2,求该星球的平均密度与地球的平均密度之比.
嫦娥三号将于今年12月发射,嫦娥三号及其月球车实现一系列重大突破,将完成在月球表面软着陆和巡视探测,实现中华民族五千年来九天揽月的梦想.一位勤于思考的同学为探月机械人设计了如下实验:在月球表面以初速度v0竖直上抛出一个物体,测得物体的经过t时间落回.通过查阅资料知道月球的半径为R,引力常量为G,若物体只受月球引力的作用,上抛高度很小.求:
(1)月球的质量
(2)嫦娥三号在距月球表面高R处绕月球圆周运行的速率.
某星球半径为R =" 6×" 106 m,假设该星球表面上有一倾角为θ = 30°的固定斜面,一质量为m =" 1" kg的小物块在力,作用下从静止开始沿斜面向上运动,力F始终与斜面平行,如图甲所示。已知小物块和斜面间的动摩擦因数,力F随位移x变化的规律如图乙所示(取沿斜面向上的方向为正向),如果小物块运动12 m时速度恰好为零,已知万有引力常量G =" 6.67" × 10-11 N·m2/kg2。试求:(计算结果保留一位有效数字)
(1)该星球表面上的重力加速度g的大小;
(2)该星球的平均密度。