天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星.双星系统在银河系中很普遍.利用双星系统中两颗恒星的运动特征可计算出它们的总质量.已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T,两颗恒星之间的距离为r,试推算这个双星系统的总质量.(引力常量为G)
“嫦娥一号”的成功发射,为实现中华民族几千年的奔月梦想迈出了重要的一步.如图所示,“嫦娥一号”先进入绕月飞行的椭圆轨道,然后再椭圆轨道近月点变轨进入绕月飞行圆轨道;已知“嫦娥一号”绕月飞行的椭圆轨道远月点距月球表面高度为;又已知“嫦娥一号”绕月圆轨道飞行时,距月球表面的高度为,飞行周期为,月球的半径为,万有引力常量为;再后,假设宇航長在飞船上,操控飞船在月球表面附近竖直平面内俯冲,在最低点附近作半径为的圆周运动,宇航员质量是,飞船经过最低点时的速度是.求:
(1)月球的质量是多大?
(2)“嫦娥一号”经绕月飞行的椭圆轨道远月点时的加速度多大?“嫦娥一号”经绕月飞行的椭圆轨道近月点时欲变轨进入如图圆轨道,应该向前还是向后喷气?
(3)操控飞船在月球表面附近竖直平面内俯冲经过最低点时,座位对宇航员的作用力是多大?
已知火星半径R火=R地,火星质量M火=M地,问:
(1)火星表面处的重力加速度与地球表面处的重力加速度之比为多少?
(2)若想在火星上发射一颗接近火星表面运行的人造卫星,则发射速度与在地球上发射一颗近地卫星的发射速度之比为多少?
由三颗星体构成的系统,忽略其他星体对它们的作用,存在着一种运动形式:三颗星体在相互之间的万有引力作用下,分别位于等边三角形的三个顶点上,绕某一共同的圆心
在三角形所在的平面内做相同角速度的圆周运动(图示为
、
、
三颗星体质量不相同时的一般情况)。若A星体质量为
,
、
两星体的质量均为
,三角形边长为
。求:
(1) 星体所受合力大小 ;
(2)
星体所受合力大小
;
(3)
星体的轨道半径
;
(4)三星体做圆周运动的周期
。
“神舟九号”飞船与“天宫一号”目标飞行器在2012年6月18日14时07分实现自动交会对接,形成组合体。并于6月24日12时55分第一次实现了手动交会对接,使我国载人航天空间交会实验获得重大成功。
(1)如图所示,为“神舟九号”的示意图,P1、P2、P3、P4是四个喷气发动机,每台发动机开动时都能向“神舟九号”提供动力,但不会使其转动。当“神舟九号”与“天宫一号”在同一轨道运行,相距30m停泊(相对静止)时,若仅开动发动机P1使“神舟九号”瞬间获得大于“天宫一号”的运行速度,则它们能否实现交会对接?( 只答“能”或“不能” )
(2)若地球表面的重力加速度为g,地球半径为R,组合体运行的圆轨道距地面的高度为h,那么,组合体绕地球运行的周期是多少?
(10分)天文观测到某行星有一颗以半径r、周期T环绕该行星做圆周运动的卫星,已知卫星质量为m.求:
(1)该行星的质量M是多大?
(2)如果该行星的半径是卫星运动轨道半径的1/10,那么行星表面处的重力加速度是多大?
如图所示,A是地球的同步卫星,另一卫星B的圆形轨道位于赤道平面内,离地面高度为h,已知地球半径为R,地球自转角速度为ω0,地球表面的重力加速度为g,O为地球中心。求:
(1)卫星B的运行周期;
(2)若卫星B绕行方向与地球自转方向相同,某时刻A、B两 卫星相距最近(O、B、A在同一直线上),则至少经过多长时间,他们再一次相距最近?
经过用天文望远镜长期观测,人们在宇宙中已经发现了许多双星系统,通过对它们的研究,使我们对宇宙中物质的存在形式和分布情况有了较深刻的认识,双星系统由两个星体组成,其中每个星体的线度都远小于两星体之间的距离,一般双星系统距离其他星体很远,可以当做孤立系统来处理。现根据对某一双星系统的光度学测量确定,该双星系统中每个星体的质量都是M,两者相距L,它们正围绕两者连线的中点做圆周运动。试求:
(1)该双星系统的运动周期;
(2)若该实验中观测到的运动周期为T观测,且。为了理解T观测 与T计算的不同,目前有一种流行的理论认为,在宇宙中可能存在一种望远镜观测不到的暗物质。作为一种简化模型,我们假定在以这两个星体连线为直径的球体内均匀分布这种暗物质。若不考虑其他暗物质的影响,根据这一模型和上述观测结果确定该星系间这种暗物质的密度。
我国“神舟”五号飞船于2003年l0月15日在酒泉航天发射场由长征二号F运载火箭成功发射升空,若长征二号F运载火箭和飞船起飞时总质量为1.0×105kg,起飞推动力为3.0×106N,运载火箭发射塔高160m,试问:(g=10m/s2)
(1)运载火箭起飞时的加速度为多大?
(2)假如运载火箭起飞时推动力不变,忽略一切阻力和运载火箭质量的变化,试确定运载火箭需经多长时间才能飞离发射塔?
(3)这段时间内飞船中的宇航员承受了多大的压力?(设宇航员的质量为65kg)
在半径R=5000 km 的某星球表面,宇航员做了如下实验.实验装置如图甲所示,竖直平面内的光滑轨道由轨道AB和圆弧轨道BC组成,将质量m=0.2 kg 的小球从轨道AB上高H处的某点静止滑下,用力传感器测出小球经过C点时对轨道的压力F,改变H的大小,可测出相应的F大小,F随H的变化关系如图乙所示.求:
(1)圆轨道的半径.
(2)该星球的第一宇宙速度.
如图所示,A是地球的同步卫星.另一卫星B的圆形轨道位于赤道平面内,离地面高度为h.已知地球半径为R,地球自转角速度为ω0,地球表面的重力加速度为g,O为地球中心.
(1)求卫星B的运行周期.
(2)如卫星B绕行方向与地球自转方向相同,某时刻A、B两卫星相距最近(O、B、A在同一直线上),则至少经过多长时间,它们还能相距最近?
一个质量为1500 kg行星探测器从某行星表面竖直升空,发射时发动机推力恒定,发射升空后8 s末,发动机突然间发生故障而关闭;如图所示为探测器从发射到落回出发点全过程的速度图象;已知该行星表面没有大气,不考虑探测器总质量的变化;求:
(1)探测器在行星表面上升达到的最大高度;
(2)探测器落回出发点时的速度;
(3)探测器发动机正常工作时的推力。
我国自主研制的北斗卫星导航系统包括5颗静止轨道卫星(同步卫星)和30颗非静止轨道卫星,将为全球用户提供高精度、高可靠性的定位、导航服务。
A为地球同步卫星,质量为m1;B为绕地球做圆周运动的非静止轨道卫星,质量为m2,离地面高度为h.已知地球半径为R,地球自转周期为T0,地球表面的重力加速度为g。 求:
(1)卫星A运行的角速度;(2)卫星B运行的线速度。
“嫦娥三号”是我国嫦娥工程第二阶段的登月探测器,于2013年12月2日凌晨l时30分在西昌卫星发射中心发射,携“玉兔号”月球车奔向距地球38万千米的月球;6日17时53分,“嫦娥三号”成功实施近月制动,顺利进入距月面平均高度约100千米的环月轨道;14日21时11分在月球正面的虹湾地区,“嫦娥三号”又成功实现月面软着陆,开始对月表形貌与地质构造等进行科学探测。若“嫦娥三号”环月飞行时运行周期为T,环月轨道(图中圆轨道Ⅰ)距月球表面高为h。已知月球半径为R,引力常量为G,求:
(1)月球的质量;
(2)月球表面的重力加速度。
随着航天技术的不断发展,人类宇航员可以乘航天器登陆一些未知星球。一名宇航员在登陆某星球后为了测量此星球的质量进行了如下实验:他把一小钢球托举到距星球表面高度为h处由静止释放,计时仪器测得小钢球放到落回星球表面的时间为t。此前通过天文观测测得此星球的半径为R,已知万有引力常量为G,不计小钢球下落过程中的气体阻力,可认为此星球表面的物体受到的重力等于物体与星球之间的万有引力。求:
(1)此星球表面的重力加速度g;
(2)此星球的质量M;及第一宇宙速度
(3)若距此星球表面高H的圆形轨道有一颗卫星绕它做匀速圆周运动,求卫星的运行周期T。