宇航员站在一星球表面上的某高处,沿水平方向抛出一个小球。经过时间t,小球落到星球表面,测得抛出点与落地点之间的距离为L。若抛出时的初速度增大到2倍,则抛出点与落地点之间的距离为。已知两落地点在同一水平面上,该星球的半径为R,万有引力常数为G,则:
若在该星球上发射卫星,求最小的发射速度;
该星球的平均密度为多大?
“勇气”号火星车在火星表面登陆的时机选择在6万年来火星距地球最近的一次,火星与地球之间的距离仅有5580万千米,如图所示,设火星车在登陆前绕火星做匀速圆周运动,距火星表面高度为H,火星半径为R,绕行N圈的时间为t,求:
(1)若地球、火星绕太阳公转为匀速圆周运动,其周期分别为T地 T火,比较它们的大小.
(2)火星的平均密度(用R、H、N、t及万有引力常数G表示).
(3)火星车登陆后不断地向地球发送所拍摄的照片,地球上接收到的第一张照片大约是火星车多少秒前拍摄的?
某星球质量是地球质量的五分之一,该星球的半径是地球半径的两倍.在该星球表面以16m/s的速度竖直上抛一质量为60kg的物体.求物体上升的最大高度是多少? (g=10m/s2)
为了实现登月计划,先要测算地月之间的距离。已知地球表面重力加速度为g,地球半径为R,在地面附近物体受到地球的万有引力近似等于物体在地面上的重力,又知月球绕地球运动的周期为T,万有引力常量为G。则:
(1)地球的质量为多少?
(2)地月之间的距离约为多少?
某宇航员在飞船发射前测得自身连同宇航服等随身装备共重840 N,在火箭发射阶段,发现当飞船随火箭以a=g/2的加速度匀加速竖直上升到某位置时(其中g为地球表面处的重力加速度),其身下体重测试仪的示数为1220 N.设地球半径R="6400" km,地球表面重力加速度g="10" m/s2(求解过程中可能用到=1.03,1.02).问:
(1)该位置处的重力加速度g′是地面处重力加速度g的多少倍?
(2)该位置距地球表面的高度h为多大?
宇航员到达某行星表面后,用长为的细线拴一小球,让球在竖直面内做圆周运动。他测得当球通过最高点的速度为时,绳中张力刚好为零。设行星的半径为R、引力常量为G,求:
(1)该行星表面的重力加速度大小
(2)该行星的质量
(3)在该行星表面发射卫星所需要的最小速度