某宇航员在地面上体重为600N,他在宇宙飞船中以5m/s2的加速度竖直匀加速上升,当上升到某高度时他所受的支持力为450N,求:①、宇航员的质量;②、此时宇宙飞船离地面的高度。(取地球半径6.4×103km,地球表面处重力加速度10m/s2)
某中子星的质量大约与太阳的质量相等,为2×kg,但是它的半径才不过10km,求:(1)此中子星表面的自由落体加速度。
(2)贴近中子星表面,沿圆轨道运动的小卫星的速度。
(已知引力常量为G=6.67×N )
已知太阳的质量为M,地球的质量为m1,月球的质量为m2,设月亮到太阳的距离为a,地球到月亮的距离为b,则当发生日全食时,太阳对地球的引力F1和对月亮的吸引力F2的大小之比为多少?
为了探测某星球,载着登陆舱的探测飞船绕着该星球做匀速圆周运动,测得其周期为T1,轨道半径为r1;随后登陆舱脱离飞船,变轨到离星球表面很近的轨道上做匀速圆周运动,测得其周期为T2。已知万有引力常量为G。求:
(1)该星球的质量;
(2)星球表面的重力加速度。
两颗人造卫星A、B绕地球作匀速圆周运动,运动的周期之比为TA:TB=1:27,求:①、两卫星轨道半径之比;②、两卫星运动速率之比。
我国已启动“登月工程”,设想在月球表面上,宇航员测出小物块自由下落h高度所用的时间为t。当飞船在靠近月球表面圆轨道上飞行时,测得其环绕周期是T,已知引力常量为G。根据上述各量,试求:
⑴月球表面的重力加速度;
⑵月球的质量。
如图所示,“神舟”十号宇宙飞船控制中心的大屏幕上出现的一幅卫星运行轨迹图,它记录了飞船在地球表面垂直投影的位置变化;图中表示在一段时间内飞船绕地球圆周飞行四圈,依次飞经中国和太平洋地区的四次轨迹①、②、③、④,图中分别标出了各地点的经纬度(如:在轨迹①通过赤道时的经度为西经157.5°,绕行一圈后轨迹②再次经过赤道时经度为180°……),若地球质量为M,地球半径为R,万有引力恒量为G 。请完成以下问题:
①飞船轨道平面与赤道平面的夹角为 ;
②飞船绕地球运行的周期(写出分析原因及计算过程)
③飞船运行轨道距地球表面的高度(写出计算过程)。
已知引力常量为G,地球的质量为M,地球的半径为R,某飞船绕地球做匀速圆周运动时距地面的高度为h.根据以上条件,试求该飞船绕地球做匀速圆周运动时的线速度大小?(用题中字母表示结果)
宇宙飞船以a=g/2的加速度匀加速上升,由于超重现象,用弹簧秤测得质量为10kg的物体重量为75N,由此可求飞船所处位置距地面高度为多少?(地球半径R=6400km,g=10m/s2)
宇航员驾驶宇宙飞船到达月球,他在月球表面做了一个实验:在离月球表面高度为h处,将一小球以初速度v0水平抛出,水平射程为x。已知月球的半径为R,万有引力常量为G。不考虑月球自转的影响。求:
(1)月球表面的重力加速度大小g0 ;
(2)月球的质量M;
(3)飞船在近月圆轨道绕月球做匀速圆周运动的速度v。
在勇气号火星探测器着陆的最后阶段,着陆器降落到火星表面上,再经过多次弹跳才停下来.假设着陆器第一次落到火星表面弹起后,到达最高点时的高度为h,速度方向是水平的,速度大小为v0,求它第二次落到火星表面时速度的大小,计算时不计火星大气阻力.已知火星的一个卫星的圆轨道的半径为r,周期为T.火星可视为半径为r0的均匀球体.
天文学家将相距较近,仅在彼此的引力作用填运行的两颗恒星称为双星,双星系统在银河系中很普遍,利用双星系统中两颗恒星的运动特征可推算出它们的总质量,已知某双星系统中两颗恒星围绕它们连线上的某一点分别做匀速圆周运动,周期均为T,两颗恒星之间的距离为r,万有引力常量为G,试推算这个双星系统的总质量
地球绕太阳公转的轨道半径为1.49×1011m,公转的周期是3.16×107s,太阳的质量是多少?(已知万有引力常数G=6.67×10-11Nm2/kg2)(计算结果保留1位有效数字)
质量为m的卫星离地面R0处做匀速圆周运动。设地球的半径也为R0,地面的重力加速度为g,引力常数G,求:(1)地球的质量; (2)卫星的线速度大小。