(本题满分18分,其中第1小题5分,第2小题5分,第3小题8分)
在平面直角坐标系中,已知为坐标原点,点
的坐标为
,点
的坐标为
,其中
且
.设
.
(1)若,
,
,求方程
在区间
内的解集;
(2)若点是过点
且法向量为
的直线
上的动点.当
时,设函数
的值域为集合
,不等式
的解集为集合
. 若
恒成立,求实数
的最大值;
(3)根据本题条件我们可以知道,函数的性质取决于变量
、
和
的值. 当
时,试写出一个条件,使得函数
满足“图像关于点
对称,且在
处
取得最小值”.(说明:请写出你的分析过程.本小题将根据你对问题探究的完整性和在研究过程中所体现的思维层次,给予不同的评分.)
(本题满分18分,其中第1小题6分,第2小题4分,第3小题8分)
定义变换:
可把平面直角坐标系上的点
变换到这一平面上的点
.特别地,若曲线
上一点
经变换公式
变换后得到的点
与点
重合,则称点
是曲线
在变换
下的不动点.
(1)若椭圆的中心为坐标原点,焦点在
轴上,且焦距为
,长轴顶点和短轴顶点间的距离为2. 求该椭圆
的标准方程. 并求出当
时,其两个焦点
、
经变换公式
变换后得到的点
和
的坐标;
(2)当时,求(1)中的椭圆
在变换
下的所有不动点的坐标;
(3)试探究:中心为坐标原点、对称轴为坐标轴的双曲线在变换:
(
,
)下的不动点的存在情况和个数.
(本题满分14分,其中第1小题8分,第2小题6分)
一企业生产的某产品在不做电视广告的前提下,每天销售量为件. 经市场调查后得到如下规律:若对产品进行电视广告的宣传,每天的销售量
(件)与电视广告每天的播放量
(次)的关系可用如图所示的程序框图来体现.
(1)试写出该产品每天的销售量
(件)关于电视广告每天的播放量
(次)的函数关系式;
(2)要使该产品每天的销售量比不做电视广告时的销售量至少增加,则每天电视广告的播放量至少需多少次?
已知,
命题实系数一元二次方程
的两根都是虚数;
命题存在复数
同时满足
且
.
试判断:命题和命题
之间是否存在推出关系?请说明你的理由.
(本题满分18分,其中第1小题6分,第2小题4分,第3小题8分)
现有变换公式:
可把平面直角坐标系上的一点
变换到这一平面上的一点
.
(1)若椭圆的中心为坐标原点,焦点在
轴上,且焦距为
,长轴顶点和短轴顶点间的距离为2. 求该椭圆
的标准方程,并求出其两个焦点
、
经变换公式
变换后得到的点
和
的坐标;
(2) 若曲线上一点
经变换公式
变换后得到的点
与点
重合,则称点
是曲线
在变换
下的不动点. 求(1)中的椭圆
在变换
下的所有不动点的坐标;
(3) 在(2)的基础上,试探究:中心为坐标原点、对称轴为坐标轴的椭圆和双曲线在变换下的不动点的存在情况和个数.
(本题满分18分,其中第1小题6分,第2小题6分,第3小题6分)
已知数列的首项为1,前
项和为
,且满足
,
.数列
满足
.
(1) 求数列的通项公式;
(2) 当时,试比较
与
的大小,并说明理由;
(3) 试判断:当时,向量
是否可能恰为直线
的方向向量?请说明你的理由.
(本题满分14分,其中第1小题8分,第2小题6分)
一企业生产的某产品在不做电视广告的前提下,每天销售量为件. 经市场调查后得到如下规律:若对产品进行电视广告的宣传,每天的销售量
(件)与电视广告每天的播放量
(次)的关系可用如图所示的程序框图来体现.
(1)试写出该产品每天的销售量(件)关于电视广告每天的播放量
(次)的函数关系式;
(2)要使该产品每天的销售量比不做电视广告时的销售量至少增加,则每天电视广告的播放量至少需多少次?
(本题满分18分,第(1)小题4分,第(2)小题6分,第(2)小题8分)
已知双曲线C:的一个焦点是
,且
。
(1)求双曲线C的方程;
(2)设经过焦点的直线
的一个法向量为
,当直线
与双曲线C的右支相交于
不同的两点时,求实数
的取值范围;并证明
中点
在曲线
上。
(3)设(2)中直线与双曲线C的右支相交于
两点,问是否存在实数
,使得
为锐角?若存在,请求出
的范围;若不存在,请说明理由。
(本题满分16分,第(1)小题4分,第(2)小题6分,第(2)小题6分)
在平行四边形中,已知过点
的直线与线段
分别相交于点
。若
。
(1)求证:与
的关系为
;
(2)设,定义在
上的偶函数
,当
时
,且函数
图象关于直线
对称,求证:
,
并求
时的解析式;
(3)在(2)的条件下,不等式在
上恒成立,求实数
的取值范围。
(本题满分16分,第(1)小题4分,第(2)小题6分,第(2)小题6分)
设数列中,若
,则称数列
为“凸数列”。
(1)设数列为“凸数列”,若
,试写出该数列的前6项,并求出该6项之和;
(2)在“凸数列”中,求证:
;
(3)设,若数列
为“凸数列”,求数列前2010项和
。
(本题满分14分,第(1)小题6分,第(2)小题8分)
设分别为
的内角
的对边,
与
的夹角为
(1)求角的大小;
(2)已知,
的面积
,求
的值。
(本题满分14分,第(1)小题6分,第(2)小题8分)
设函数,若不等式
的解集为
。
(1)求
的值;
(2)若函数在
上的最小值为1,求实数
的值。