高中数学

已知抛物线和点,若抛物线上存在不同两点满足
(1)求实数的取值范围;
(2)当时,抛物线上是否存在异于的点,使得经过三点的圆和抛物线在点处有相同的切线,若存在,求出点的坐标,若不存在,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数处取得极值.
(1)求的值;
(2)求函数上的最小值;
(3)求证:对任意,都有.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数
(1)讨论函数在定义域内的极值点的个数;
(2)若函数处取得极值,对,恒成立,求实数的取值范围;
(3)当时,试比较的大小

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数.
(1)求在点处的切线方程;
(2)求函数上的最大值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数.
(1)求在点处的切线方程;
(2)求函数上的最大值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数.
(1)若函数的图象在点处的切线的倾斜角为,求上的最小值;
(2)若存在,使,求a的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数上为增函数,
(1)求的值;
(2)当时,求函数的单调区间和极值;
(3)若在上至少存在一个,使得成立,求的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

设函数 f ( x ) = a e x ln x + b e x - 1 x ,曲线 y = f ( x ) 在点 ( 1 , f ( 1 ) ) 处的切线方程为 y = e ( x - 1 ) + 2 .

(I)求 a , b ;

(II)证明: f ( x ) > 1 .

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数,其中,且曲线在点处的切线垂直于.
(1)求的值;
(2)求函数的单调区间与极值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知曲线处的切线方程是.
(1)求的解析式;
(2)求曲线过点的切线方程.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数f(x)=ax2-(a+2)x+lnx.
(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)当a>0时,若f(x)在区间[1,e]上的最小值为-2,求a的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数f(x)=x3+ax2+bx+a2(a,b∈R).
(1)若函数f(x)在x=1处有极值10,求b的值;
(2)若对于任意的a∈[-4,+∞),f(x)在x∈[0,2]上单调递增,求b的最小值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数f(x)=(x2+ax-2a2+3a)ex(x∈R),其中a∈R.
(1)当a=0时,求曲线y=f(x)在点(1,f(1))处的切线的斜率;
(2)当a≠时,求函数y=f(x)的单调区间与极值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数,当时,有极大值.
(1)求的值;
(2)求函数的极小值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

是否存在实数a,使函数f(x)=loga(ax2-x)在区间[2,4]上是增函数?如果存在,求出a的取值范围;如果不存在,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学组合几何解答题