(本小题满分14分)如图所示,某市政府决定在以政府大楼O为中心、正北方向
和正东方向的马路为边界的扇形地域内建造一个图书馆.为了充分利用这块土地,并考
虑与周边环境协调,设计要求该图书馆底面矩形的四个顶点都要在边界上,图书馆的正
面要朝市政府大楼.设扇形的半径OM=R ,,OB与OM之间的夹角为.
(1)将图书馆底面矩形ABCD的面积S表示成的函数.
(2)若 R=45 m,求当为何值时,矩形ABCD的面积S有最大值?
其最大值是多少?
若函数f(x)=kx-|x|+|x-2|有3个零点,实数k的取值范围是( )
A.[1,+∞) | B.(0,1] | C.(1,+∞) | D.(0,1) |
已知函数,若f(x)在x=1处的切线方程为3x+y-6=0
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若对任意的,都有f(x)成立,求函数g(t)的最值
(本小题满分14分)
在△ABC中,BC=2,AB+AC=3,中线AD的长为y,AB的长为x,
(1) 建立y与x的函数关系式,并指出其定义域.
(2) 求y的最小值,并指出x的值.
设f (x)是奇函数,且在(0,+∞)上是增函数,又f (-3)=0,则x·f (x)<0的解集为
A.{x∣-3<x<0或x>3} |
B.{x∣x<-3或0<x<3} |
C.{x∣x<-3或x>3} |
D.{x∣-3<x<0或0<x<3} |