高中数学

有一种游戏规则如下:口袋里有5个红球和5个黄球,一次摸出5个,若颜色相同则得100分,若4个球颜色相同,另一个不同,则得50分,其他情况不得分。小张摸一次得分的期望是分__ _ _ ______.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分12分)
有编号为l,2,3,…,个学生,入坐编号为1,2,3,…,个座位.每个学生规定坐一个座位,设学生所坐的座位号与该生的编号不同的学生人数为,已知时,共有6种坐法.
(1)求的值;
(2)求随机变量的概率分布列和数学期望.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

设随机变量X~N(0,1),已知,则(  )

A.0.025  B.0.050
C.0.950  D.0.975
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

二十世纪50年代,日本熊本县水俣市的许多居民都患了运动失调、四肢麻木等症状,人们把它称为水俣病.经调查发现一家工厂排出的废水中含有甲基汞,使鱼类受到污染.人们长期食用含高浓度甲基汞的鱼类引起汞中毒. 引起世人对食品安全的关注.《中华人民共和国环境保护法》规定食品的汞含量不得超过1.00ppm.
罗非鱼是体型较大,生命周期长的食肉鱼,其体内汞含量比其他鱼偏高.现从一批罗非鱼中随机地抽出15条作样本,经检测得各条鱼的汞含量的茎叶图(以小数点前一位数字为茎,小数点后一位数字为叶)如下:
 
(Ⅰ)若某检查人员从这15条鱼中,随机地抽出3条,求恰有1条鱼汞含量超标的概率;
(Ⅱ)以此15条鱼的样本数据来估计这批鱼的总体数据.若从这批数量很大的鱼中任选3条鱼,记ξ表示抽到的鱼汞含量超标的条数,求ξ的分布列及Eξ

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

某产品按行业生产标准分成个等级,等级系数依次为,其中为标准为标准,产品的等级系数越大表明产品的质量越好,已知某厂执行标准生产该产品,且该厂的产品都符合相应的执行标准.
(Ⅰ)从该厂生产的产品中随机抽取件,相应的等级系数组成一个样本,数据如下:
3   5   3   3   8   5   5   6   3   4
6   3   4   7   5   3   4   8   5   3
8   3   4   3   4   4   7   5   6   7
该行业规定产品的等级系数的为一等品,等级系数的为二等品,等级系数的为三等品,
(1)试分别估计该厂生产的产品的一等品率、二等品率和三等品率;
(2)已知该厂生产一件该产品的利润y(单位:元)与产品的等级系数的关系式为:
,从该厂生产的产品中任取一件,其利润记为,用这个样本的频率分布估计总体分布,将频率视为概率,求的分布列和数学期望.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

随机变量服从二项分布,且等于(   )

A. B.
C.1 D.0
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

.出租车司机从饭店到火车站途中有六个交通岗,假设他在各交通岗遇到红灯是相互独立的,并且概率都是 则这位司机在途中遇到红灯数ξ的方差为        . (用分数表示)

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

为参加2012年伦敦奥运会,某旅游公司为三个旅游团提供了四条旅游线路,每个旅游团可任选其中一条线路,则选择线路旅游团数的数学期望        

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

一个篮球运动员投篮一次得3分的概率为,得2分的概率为,不得分的概率为
,已知他投篮一次得分的期望是2,则的最小值为(   )

A. B. C. D.
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分12分)某饮料公司招聘了一名员工,现对其进行一项测试,以使确定工资级别,公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A饮料,另外4杯为B饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A饮料,若4杯都选对,则月工资定为3500元,若4杯选对3杯,则月工资定为2800元,否则月工资定为2100元,令X表示此人选对A饮料的杯数,假设此人对A和B两种饮料没有鉴别能力.
(1)求X的分布列;
(2)求此员工月工资的期望.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

五名奥运志愿者被随机地分到四个不同的岗位服务,每个岗位至少有一名志愿者,设随机变量为这五名志愿者中参加岗位服务的人数,则_

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

. 袋中装有大小、形状完全相同的m个红球和n个白球,其中m,n满足
已知从袋中任取2个球,取出的2个球是同色的概率等于取出的2个球是异色的概率.现从袋中任取2个球,设取到红球的个数为ξ,则ξ的期望=         

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

设导弹发射的事故率为0.01,若发射10次,其出事故的次数为ξ,则下列结论正确的是(   )

A.P(ξ=k)=0.01k·0.9910-k B.P(ξ=k)=·0.99k·0.0110-k
C.Eξ=0.1 D.Dξ=0.1
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

设离散型随机变量满足,则等于(   )

A.27 B.24 C.9 D.6
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

某商场一号电梯从1层出发后可以在2、3、4层停靠.已知该电梯在1层载有4位乘客,假设每位乘客在2、3、4层下电梯是等可能的.用表示4名乘客在第4层下电梯的人数,则的数学期望为               ,方差为               

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学随机思想的发展试题