如图,在三棱锥P—ABC中,G、H分别为PB、PC的中点,且△ABC为等腰直角三角形,∠B=90°.
⑴求证:GH∥平面ABC;
⑵求异面直线GH与AB所成的角.
在长方体中,,过,,三点的平面截去长方体的一个角后,得到如图所示的几何体,这个几何体的体积为.
(1)证明:直线∥平面;
(2)求棱的长;
(3)在线段上是否存在点,使直线与垂直,如果存在,求线段的长,如果不存在,请说明理由.
如图,在五面体中,已知平面,,,,.
(1)求证:;
(2)求三棱锥的体积.
如图所示,四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,M、N分别是AB、PC的中点,PA=AD=a.
(1)求证:MN∥平面PAD;
(2)求证:平面PMC⊥平面PCD.
如图,四边形ABCD为正方形,PD⊥平面ABCD,,AF⊥PC于点F,FE∥CD交PD于点E.
(1)证明:CF⊥平面ADF;
(2)若,证明平面
如图已知:菱形所在平面与直角梯形ABCD所在平面互相垂直,,点分别是线段的中点.
(1)求证:平面平面;
(2)试问在线段上是否存在点,使得平面,若存在,求的长并证明;若不存在,说明理由.
如图,四棱锥中,侧面是边长为2的正三角形,底面是菱形,,点在底面上的射影为的重心,点为线段上的点.
(1)当点为的中点时,求证:平面;
(2)当平面与平面所成锐二面角的余弦值为时,求的值.
已知E是矩形ABCD(如图1)边CD上的一点,现沿AE将△DAE折起至△D1AE(如图2),并且平面D1AE⊥平面ABCE,图3为四棱锥D1—ABCE的主视图与左视图.
(1)求证:直线BE⊥平面D1AE;
(2)求点A到平面D1BC的距离.
如图,在多面体中,四边形是正方形,.
.
(Ⅰ) 求证:;
(Ⅱ)求二面角的余弦值的大小.
(本小题满分14分)如图,在三棱锥P- ABC中,已知平面PBC 平面ABC.
(1)若ABBC,CPPB,求证:CPPA:
(2)若过点A作直线⊥平面ABC,求证://平面PBC.