对于平面α和共面的直线m、n,下列命题正确的是( )
A.若m、n与α所成的角相等,则m∥n |
B.若m∥α,n∥α,则m∥n |
C.若m⊥α,m⊥n,则n∥α |
D.若mα,n∥α,则m∥n |
将边长为2,锐角为的菱形沿较短对角线折成二面角,点分别为的中点,给出下列四个命题:
①;②是异面直线与的公垂线;③当二面角是直二面角时,与间的距离为;④垂直于截面.
其中正确的是 (将正确命题的序号全填上).
设,,是三个互不重合的平面,,是直线,给出下列命题:①,,则;②若,,,则;③若,在内的射影互相垂直,则;④若,,,则,其中正确命题的个数为( )
A.0 | B.1 | C.2 | D.3 |
如果一条直线与一个平面垂直,那么,称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是( )
A.48 | B.18 | C.24 | D.36 |
在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,FC⊥平面
ABCD,AE⊥BD,CB=CD=CF=1,
(1)求证:BD⊥平面AED;
(2)求B到平面FDC的距离.
已知直线l、m 、n 与平面α、β给出下列四个命题:
①若m∥l,n∥l,则m∥n; ②若m⊥α, m∥β,则α⊥β; ③若m∥α,n∥α,则m∥n
④若m⊥β,α⊥β,则m∥α。 其中,假命题的个数是 ( )
A.1 | B.2 | C. 3 | D.4 |
(本小题满分14分)如图,在四面体中,,点是的中点,点在线段上,且.
(1)若∥平面,求实数的值;
(2)求证:平面平面.
已知直线与平面,给出下列三个结论:
①若∥,∥,则∥;
②若∥,,则;
③若,∥,则.
其中正确的个数是 ( )
A.0 | B.1 | C.2 | D.3 |
如图,三棱柱中,侧棱底面,底面三角形是正三角形,是中点,则下列叙述正确的是
A.与是异面直线 |
B.平面 |
C.,为异面直线,且 |
D.平面 |
已知E是矩形ABCD(如图1)边CD上的一点,现沿AE将△DAE折起至△D1AE(如图2),并且平面D1AE⊥平面ABCE,图3为四棱锥D1—ABCE的主视图与左视图.
(1)求证:直线BE⊥平面D1AE;
(2)求点A到平面D1BC的距离.
已知两个平面垂直,下列命题中:
(1)一个平面内已知直线必垂直于另一个平面内的任意一条直线;
(2)一个平面内已知直线必垂直于另一个平面内的无数条直线;
(3)一个平面内的任意一条直线必垂直于另一个平面;
(4)过一个平面内任意一点作交线的垂线,则此垂线必垂直于另一个平面.其中正确命题的个数有
A.1 | B.2 | C.3 | D.4 |