在平面几何里,有勾股定理:“设△ABC的两边AB,AC互相垂直,则AB2+AC2=BC2.”拓展到空间,类比平面几何的勾股定理,研究三棱锥的面面积与底面面积间的关系。可以得出的正确结论是:“设三棱锥A—BCD的三个侧面ABC、ACD、ADB两两相互垂直,则 ”.
下列命题中,真命题是 (将真命题前面的编号填写在横线上).
①已知平面、和直线、,若,且,则.
②已知平面、和两异面直线、,若,且,,则.
③已知平面、、和直线,若,且,则.
④已知平面、和直线,若且,则或.
在直三棱柱中,若,,,为中点,点
为中点,在线段上,且,则的长度为________ .
表示直线,表示平面,给出下列四个命题:
①若 则 ;
②若,则 ;
③若,则 ;
④若 ,则 .
其中正确命题的个数有 ________个.
若是两个相交平面,则在下列命题中,真命题的序号为 .(写出所有真命题的序号)
①若直线,则在平面内,一定不存在与直线平行的直线.
②若直线,则在平面内,一定存在无数条直线与直线垂直.
③若直线,则在平面内,不一定存在与直线垂直的直线.
④若直线,则在平面内,一定存在与直线垂直的直线.
若是互不重合的直线,是互不重合的平面,给出下列命题:
①若则或;
②若则;
③若不垂直于,则不可能垂直于内的无数条直线;
④若且则;
⑤若且则.
其中正确命题的序号是 .
若是互不重合的直线,是互不重合的平面,给出下列命题:
①若则或;
②若则;
③若不垂直于,则不可能垂直于内的无数条直线;
④若且则;
⑤若且则.
其中正确命题的序号是 .
如图,设P是60的二面角 内一点,PA 平面 ,PB 平面 ,A、B为垂足若PA=4.PB=2,则AB的长为_______.
下列说法中:
①两条直线都和同一个平面平行,则这两条直线平行;
②在平行投影下,与投影面平行的平面图形留下的影子,与这个平面图形的形状和大小完全相同;
③一个圆绕其任意一条直径旋转180°所形成的旋转体叫做球;
④a∥b,b⊂α⇒a∥α;
⑤已知三条两两异面的直线,则存在无穷多条直线与它们都相交.
则正确的序号是 .
给出下列结论:
①函数在区间上有且只有一个零点;
②已知l是直线,是两个不同的平面.若;
③已知表示两条不同直线,表示平面.若;
④在中,已知,在求边c的长时有两解.
其中所有正确结论的序号是:
已知PA⊥正方形ABCD所在的平面,垂足为A,连结PB,PC,PD,则平面PAB,平面PAD,平面PCD,平面PBC,平面ABCD中互相垂直的平面有 对
在四棱锥P—ABCD中,侧面PAD、侧面PCD与底成ABCD都垂直,底面是边长为3的正方形,PD=4,则四棱锥P—ABCD的全面积为 .
在正方体中,过对角线的一个平面交棱于E,交棱于F,则:①四边形一定是平行四边形;②四边形有可能是正方形;③四边形有可能是菱形;④四边形有可能垂直于平面.
其中所有正确结论的序号是 .