表示直线,表示平面,下列命题正确的是( )
A.若,,则 | B.若⊥, ⊥,则⊥ |
C.若⊥,⊥,则 | D.若⊥,⊥,则 |
已知l,m,n是三条不同的直线,α,β是不同的平面,则下列条件中能推出α⊥β的是( )
A.lα,mβ,且l⊥m |
B.lα,mβ,nβ,且l⊥m,l⊥n |
C.mα,nβ,m//n,且l⊥m |
D.lα,l//m,且m⊥β |
给岀四个命题:
(1)若一个角的两边分别平行于另一个角的两边,则这两个角相等;
(2)a,b为两个不同平面,直线a Ìa,直线b Ìa,且a∥b,b∥b , 则a∥b ;
(3)a,b为两个不同平面,直线m⊥a,m⊥b 则a∥b ;
(4)a,b为两个不同平面,直线m∥a,m∥b , 则a∥b .
其中正确的是( )
A.(1) | B.(2) | C.(3) | D.(4) |
如图,直三棱柱ABC—A1B1C1中,AC=BC=1,∠ACB=90°,AA1=,
D是A1B1中点.
(1)求证C1D⊥平面A1B;
(2)当点F在BB1上什么位置时,会使得AB1⊥平面C1DF?并证明你的结论.
已知m,n是两条不同的直线, 是两个不同的平面,则下列命题中的真命题是 ( )
A.若则 | B.若,则 |
C.若,则 | D.若,则 |
如图,三棱柱中,侧棱平面,为等腰直角三角形,,且分别是的中点.
(1)求证:平面;
(2)求锐二面角的余弦值;
(3)若点是上一点,求的最小值.
如图,在正方形SG1G2G3中,E,F分别是G1G2,G2G3的中点, D是EF的中点,现沿SE,SF及EF把这个正方形折成一个几何体,使G1,G2,G3三点重合于点G,这样,下列五个结论:(1)SG⊥平面EFG;(2)SD⊥平面EFG;(3)GF⊥平面SEF;(4)EF⊥平面GSD;(5)GD⊥平面SEF,正确的是( )
A.(1)和(3) | B.(2)和(5) |
C.(1)和(4) | D.(2)和(4) |
设,,是三个互不重合的平面,,是直线,给出下列命题:①,,则;②若,,,则;③若,在内的射影互相垂直,则;④若,,,则,其中正确命题的个数为( )
A.0 | B.1 | C.2 | D.3 |
如图,三棱柱中,侧棱底面,底面三角形是正三角形,是中点,则下列叙述正确的是
A.与是异面直线 |
B.平面 |
C.,为异面直线,且 |
D.平面 |
已知为不同的直线,为不同的平面,则下列说法正确的是
A. |
B. |
C. |
D. |
已知命题“如果x⊥y,y∥z,则x⊥z”是假命题,那么字母x,y,z在空间所表示的几何图形可能是( )
A.全是直线 | B.全是平面 |
C.x,z是直线,y是平面 | D.x,y是平面,z是直线 |