如图,三棱柱中,侧棱平面,为等腰直角三角形,,且分别是的中点.(1)求证:平面;(2)求锐二面角的余弦值;(3)若点是上一点,求的最小值.
(本小题满分10分)选修4-5;不等式选讲若且(1)求的最小值;(2)是否存在,使得?并说明理由.
(本小题满分10分)选修4-4:坐标系与参数方程已知曲线,直线(为参数)(1)写出曲线的参数方程,直线的普通方程;(2)过曲线上任意一点作与夹角为30°的直线,交于点,求的最大值与最小值.
(本小题满分10分)选修4-1,几何证明选讲如图,四边形是的内接四边形,的延长线与的延长线交于点,且.(1)证明:;(2)设不是的直径,的中点为,且, 证明:为等边三角形.
已知焦点在轴,顶点在原点的抛物线经过点,以抛物线上一点为圆心的圆过定点(0,1),记为圆与轴的两个交点.(1)求抛物线的方程;(2)当圆心在抛物线上运动时,试判断是否为一定值?请证明你的结论;(3)当圆心在抛物线上运动时,记,,求的最大值.
已知函数,其中是常数.(1)当时,求曲线在点处的切线方程;(2)若在定义域内是单调递增函数,求的取值范围.