高中数学

一空间几何体的三视图如图所示,则该几何体的体积为(只写出一解即可)

  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

已知正四棱锥的底面面积为16,一条侧棱长为,则它的斜高为

  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

如图.M是棱长为2cm的正方体ABCD-A1B1C1D1的棱CC1的中点,沿正方体表面从点A到点M的最短路程是cm.

  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

已知三棱柱ABC-A1B1C1的底面是边长为2的正三角形,面ABC,高为5,一质点自点A出发,沿着三棱柱的侧面绕行两周到达点A1的最短路线的长为_______

  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

正方体木块的表面上有一动点P由顶点A出发按下列规则向点移动:①点P只能沿正方体木块的棱或表面对角线移动;②点P每一变化位置,都使P点到点的距离缩短,③若在面对角线上移动时,不能在中点处转入另一条面对角线,动点P共有_______种不同的运行路线.

  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

下列命题中正确的是(填序号)
①棱柱被任一平面截成的两部分都是棱柱;  
②棱台的所有侧面都是等腰梯形;
③用一个平面去截圆锥,得到的几何体是一个圆锥和一个圆台;
④用任一平面去截球得到的截面都是圆面;

  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

一个圆锥有三条母线两两垂直,则它的侧面展开图的圆心角大小为_▲__

来源:2011年浙江省杭州地区七校高二上学期期中联试题数学
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

已知四面体ABCD中,DA=DB=DC=,且DA,DB,DC两两互相垂直,
点O是△ABC的中心,将△DAO绕直线DO旋转一周,则在旋转过程中,直线DA与直线
BC所成角的余弦值的取值范围是

  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

如右图,已知正三棱柱ABC-A1B1C1的各条棱长都相等,M是侧棱CC1的中点,则异面直线AB1和BM所成的角的大小是________.

  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

设三棱锥P-ABC的顶点P在平面ABC上的射影是H,给出以下命题:
①若PA⊥BC,PB⊥AC,则H是△ABC的垂心
②若PA、PB、PC两两互相垂直,则H是△ABC的垂心
③若∠ABC=90°,H是AC的中点,则PA=PB=PC
④若PA=PB=PC,则H是△ABC的外心
其中正确命题的命题是________

  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

长方体一个顶点上三条棱的长分别为3、4、5,且它的八个顶点都在同一球面上,这个球的表面积是

来源:20102011年广东省佛山市南海一中高二上学期期中考试数学文卷
  • 更新:2022-09-03
  • 题型:未知
  • 难度:未知

已知四棱椎的底面是边长为6 的正方形,侧棱底面,且,则该四棱椎的体积是.

  • 更新:2022-09-03
  • 题型:未知
  • 难度:未知

在空间四边形ABCD中,AD=BC=2,E,F分别是AB,CD的中点,若EF=,则异面直线AD与BC所成的角为_______

  • 更新:2022-09-03
  • 题型:未知
  • 难度:未知

在直三棱柱ABC-A1B1C1中∠ACB=90°, AA1="2," AC=BC=1,则异面直线A1B与AC所成角的余弦值是

来源:2010年陕西省临渭区高二上学期期末数学理卷
  • 更新:2022-09-03
  • 题型:未知
  • 难度:未知

球的半径扩大为原来的2倍,它的体积扩大为原来的倍。

  • 更新:2022-09-03
  • 题型:未知
  • 难度:未知

高中数学立体图形的结构特征填空题