动点P从边长为1的正方形ABCD的顶点出发顺次经过B、C、D再回到A;设
表示P点的行程,
表示PA的长,求
关于
的函数解析式.
设
=
(a>0)为奇函数,且
min=
,数列{an}与{bn}满足 如下关系:a1=2,
,
.
(1)求f(x)的解析表达式; (2) 证明:当n∈N+时, 有bn
.
.已知定义在R上的函数f(x)=
( a , b , c , d∈R )的图象关于原点对称,且x = 1时,f(x)取极小值
。
(Ⅰ)求f(x)的解析式;
(Ⅱ)当x∈[-1,1]时,图象旧否存在两点,使得此两面三刀点处的切线互相垂直?试证明你的结论;
(Ⅲ)若
∈[-1,1]时,求证:| f (
)-f(
)|≤
。
某商场为经营一批每件进价是10元的小商品,对该商品进行为期5天的市场试销.下表是市场试销中获得的数据.
| 销售单价/元 |
65 |
50 |
45 |
35 |
15 |
| 日销售量/件 |
15 |
60 |
75 |
105 |
165 |
根据表中的数据回答下列问题:
(1)试销期间,这个商场试销该商品的平均日销售利润是多少?
(2)试建立一个恰当的函数模型,使它能较好地反映日销售量
(件)与销售单价
(元)之间的函数关系,并写出这个函数模型的解析式;
(3)如果在今后的销售中,该商品的日销售量与销售单价仍然满足(2)中的函数关系,试确定该商品的销售单价,使得商场销售该商品能获得最大日销售利润,并求出这个最大的日销售利润.