一个篮球运动员投篮一次得3分的概率为,得2分的概率为,不得分的概率为(、、),已知他投篮一次得分的数学期望为2(不计其它得分情况),则的最大值为( )
A. | B. | C. | D. |
某射手进行射击训练,假设每次射击击中目标的概率为,且每次射击的结果互不影响,已知射手射击了5
次,求:
(1)其中只在第一、三、五次击中目标的概率;
(2)其中恰有3次击中目标的概率.
为了解某校学生的视力情况,现采用随机抽样的方式从该校的A,B两班中各抽5名学生进行视力检测.检测的数据如下:
A班5名学生的视力检测结果:4.3,5.1,4.6,4.1,4.9.
B班5名学生的视力检测结果:5.1,4.9,4.0,4.0,4.5.
(1)分别计算两组数据的平均数,从计算结果看,哪个班的学生视力较好?;
(2)由数据判断哪个班的5名学生视力方差较大?(结论不要求证明)
(3)根据数据推断A班全班40名学生中有几名学生的视力大于4.6?
小王参加一次比赛,比赛共设三关,第一、二关各有两个必答题,如果每关两个问题都答对,可进入下一关,第三关有三个问题,只要答对其中两个问题,则闯关成功.每过一关可一次性获得价值分别为1000元,3000元,6000元的奖品(不重复得奖),小王对三关中每个问题回答正确的概率依次为,,,且每个问题回答正确与否相互独立.
(1)求小王过第一关但未过第二关的概率;
(2)用X表示小王所获得奖品的价值,写出X的概率分布列,并求X的数学期望.
在高三的一个班中,有的学生数学成绩优秀,若从班中随机找出5名学生,那么数学成绩优秀的学生数ξ~B(5,),则P(ξ=k)取最大值的k值为( )
A.0 | B.1 | C.2 | D.3 |
在15个村庄中有7个村庄交通不便,现从中任意选10个村庄,用ξ表示这10个村庄中交通不便的村庄数,下列概率中等于的是( )
A.P(ξ=2) | B.P(ξ≤2) |
C.P(ξ=4) | D.P(ξ≤4) |
在不等式组所表示的平面区域内的所有格点(横、纵坐标均为整数的点称为格点)中任取3个点,则该3点恰能作为一个三角形的3个顶点的概率为________.
甲、乙两人一起去游玩,他们约定各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后1小时他们在同一个景点的概率是( )
A. | B. | C. | D. |
如图所示的茎叶图表示的是甲、乙两人在五次综合测评中的成绩,其中一个数字被污损,则甲的平均成绩不超过乙的平均成绩的概率为( )
A. | B. | C. | D. |
5张卡片上分别写有数字1,2,3,4,5,从这5张卡片中随机抽取2张,则取出2张卡片上数字之和为偶数的概率为( )
A. | B. | C. | D. |
掷一枚均匀的硬币两次,事件M:一次正面朝上,一次反面朝上,事件N:至少一次正面朝上,则下列结果正确的是( )
A.P(M)=,P(N)= | B.P(M)=,P(N)= |
C.P(M)=,P(N)= | D.P(M)=,P(N)= |
某工艺厂开发一种新工艺品,头两天试制中,该厂要求每位师傅每天制作10件,该厂质检部每天从每位师傅制作的10件产品中随机抽取4件进行检查,若发现有次品,则当天该师傅的产品不能通过.已知李师傅第一天、第二天制作的工艺品中分别有2件、1件次品.
(1)求两天中李师傅的产品全部通过检查的概率;
(2)若厂内对师傅们制作的工艺品采用记分制,两天都不通过检查的得0分,两天中只通过一天检查的得1分,两天都通过检查的得2分,求李师傅在这两天内得分的数学期望.
一个盒子里装有三张卡片,分别标记有数字,,,这三张卡片除标记的数字外完全相同。随机有放回地抽取次,每次抽取张,将抽取的卡片上的数字依次记为.
(Ⅰ)求"抽取的卡片上的数字满足"的概率;
(Ⅱ)求"抽取的卡片上的数字不完全相同"的概率.
[2013·课标全国卷Ⅱ]从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是________.