高中数学

一名小学生的年龄和身高(单位:cm)的数据如下表:

由散点图可知,身高与年龄之间的线性回归方程为,则的值为( )

A.65 B.74 C.56 D.47
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲,乙,丙三辆汽车在不同速度下的燃油效率情况,下列叙述中正确的是(  )

A.消耗1升汽油,乙车最多可行驶5千米
B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多
C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油
D.某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

设某中学的女生体重(kg)与身高(cm)具有线性相关关系,根据一组样本数,用最小二乘法建立的线性回归直线方程为,给出下列结论,则错误的是( )

A.具有正的线性相关关系
B.若该中学某女生身高增加1cm,则其体重约增加0.85kg
C.回归直线至少经过样本数据中的一个
D.回归直线一定过样本点的中心点
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

我国科研人员屠呦呦法相从青篙中提取物青篙素抗疟性超强,几乎达到100%,据监测:服药后每毫升血液中的含药量y(微克)与时间r(小时)之间近似满足如图所示的曲线

(1)写出第一服药后y与t之间的函数关系式y=f(x);
(2)据进一步测定:每毫升血液中含药量不少于微克时,治疗有效,求服药一次后治疗有效的时间是多长?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

为了解某商品销售量(单位:件)与销售价格(单位:元/件)的关系,统计了()的10组值,并画成散点图如图,则其回归方程可能是

A.
B.
C.
D.
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

下列判断中不正确的是(  )

A.为变量间的相关系数,值越大,线性相关程度越高
B.在平面直角坐标系中,可以用散点图发现变量之间的变化规律
C.线性回归方程代表了观测值之间的关系
D.任何一组观测值都能得到具有代表意义的回归直线方程
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知呈线性相关关系的变量之间的关系如下表所示,则回归直线一定过点(  )

A. B.
C. D.
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

物体运动方程为,则时的瞬时速度为(  )

A. B. C. D.
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

调查了某地若干户家庭的年收x(单位:万元)和年饮食支出y(单位:万元),调查显示年收入x与年饮食支出y具有线性相关关系,井由调查数据得到y对x的回归直线方程.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加      万元.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某产品的广告费用x与销售额y的统计数据如下表:根据上表可得回归方程=x+a中的b=10.6,据此模型预报广告费用为10万元时销售额为( )

广告费用x(万元)
4
2
3
5
销售额y(万元)
49
26
39
58

A.112.1万元       B.113.1万元       C.111.9万元       D.113.9万元

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某产品的广告费用x与销售额y的统计数据如下表:根据上表可得回归方程=x+a中的b=10.6,据此模型预报广告费用为10万元时销售额为( )

广告费用x(万元)
4
2
3
5
销售额y(万元)
49
26
39
58

A.112.1万元       B.113.1万元       C.111.9万元        D.113.9万元

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某产品的广告费用x与销售额y的统计数据如下表:

广告费用x(万元)
3
4
5
6
销售额y(万元)
25
30
40
45

根据上表可得回归方程=x+,其中为7,据此模型,若广告费用为10万元,预报销售额等于( )
A.42.0万元             B.57.0万元
C.66.5万元             D.73.5万元

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

为治疗一种慢性病,某医药研究所研究出一种新型药物,病人按规定的剂量服用该药物后,测得每毫升血液中含药量(毫克)与时间(小时)满足:前1小时内成正比例递增,1小时后按指数型函数为常数)衰减.如图是病人按规定的剂量服用该药物后,每毫升血液中药物含量随时间变化的曲线.

(1)求函数的解析式;
(2)已知每毫升血液中含药量不低于0.5毫克时有治疗效果,低于0.5毫克时无治疗效果.求病人一次服药后的有效治疗时间为多少小时?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

为了预防甲型H1N1流感,某学校对教室用药薰消毒法进行消毒,已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与t时间(小时)成正比,药物释放完毕后,y与t之间的函数关系式为(a为常数)如下图所示,根据图中提供的信息,回答下列问题.

(1)从药物释放开始,求每立方米空气中的含药量y(毫克)与时间t(小时)之间的函数关系式;
(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那么从药物释放开始至少需要经过多少小时后,学生才可能回到教室.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知的取值如表所示:若呈线性相关,且回归方程为,则等于        


2
3
4

5
4
6

 

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

高中数学变量间的相关关系试题