关于平面向量
.有下列三个命题:
①若
,则
.②若
,
,则
.
③非零向量
和
满足
,则
与
的夹角为
.
其中真命题的序号为.(写出所有真命题的序号)
在平面向量中有如下定理:设点O,P,Q,R为同一平面内的点,则P、Q、R三点共线的充要条件是:存在实数t,使.
如图,在ΔABC中,点E为AB边的中点,点F在AC边上,
且CF=2FA,BF交CE于点M,设,则
( )
A. | B. |
C. | D. |
判断下列命题正确的有
①向量与是共线向量,则A、B、C、D四点必在一直线上;
②单位向量都相等;
③任一向量与它的相反向量不相等;
④四边形ABCD是平行四边形的充要条件是=
⑤模为0是一个向量方向不确定的充要条件;
⑥共线的向量,若起点不同,则终点一定不同.
已知A、B、C、P为平面内四点,求证:A、B、C三点在一条直线上的充要条件是存在一对实数m、n,使=m+n,且m+n=1.