初中数学

已知 x y 满足方程组 x + 6 y = 12 3 x - 2 y = 8 ,则 x + y 的值为 (    )

A.

9

B.

7

C.

5

D.

3

来源:2016年宁夏中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

解方程组 x - y = 5 2 x + y = 4

来源:2019年福建省中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

解方程组 x - y = 5 2 x + y = 4

来源:2019年福建省中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

解方程组: x + y = 1 4 x + y = 10

来源:2018年福建省中考数学试卷(B卷)
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

我国古代数学著作《增删算法统宗》记载"绳索量竿"问题:"一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托."其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长 x 尺,竿长 y 尺,则符合题意的方程组是 (    )

A.

x = y + 5 1 2 x = y - 5

B.

x = y - 5 1 2 x = y + 5

C.

x = y + 5 2 x = y - 5

D.

x = y - 5 2 x = y + 5

来源:2018年福建省中考数学试卷(B卷)
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

解方程组: x + y = 1 4 x + y = 10

来源:2018年福建省中考数学试卷(A卷)
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

我国古代数学著作《增删算法统宗》记载"绳索量竿"问题:"一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托."其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长 x 尺,竿长 y 尺,则符合题意的方程组是 (    )

A.

x = y + 5 1 2 x = y - 5

B.

x = y - 5 1 2 x = y + 5

C.

x = y + 5 2 x = y - 5

D.

x = y - 5 2 x = y + 5

来源:2018年福建省中考数学试卷(A卷)
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

(1)解方程组: x - y = 4 2 x + y = 5

(2)解不等式: x 3 > 1 - x - 2 2

来源:2017年江苏省镇江市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

4月9日上午8时,2017徐州国际马拉松赛鸣枪开跑,一名34岁的男子带着他的两个孩子一同参加了比赛,下面是两个孩子与记者的对话:

根据对话内容,请你用方程的知识帮记者求出哥哥和妹妹的年龄.

来源:2017年江苏省徐州市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

某地新建的一个企业,每月将生产1960吨污水,为保护环境,该企业计划购置污水处理器,并在如下两个型号中选择:

污水处理器型号

A

B

处理污水能力(吨 / 月)

240

180

已知商家售出的2台 A 型、3台 B 型污水处理器的总价为44万元,售出的1台 A 型、4台 B 型污水处理器的总价为42万元.

(1)求每台 A 型、 B 型污水处理器的价格;

(2)为确保将每月产生的污水全部处理完,该企业决定购买上述的污水处理器,那么他们至少要支付多少钱?

来源:2017年江苏省无锡市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

(1)解不等式: 1 2 ( x - 1 ) > 2 + 3 x

(2)解方程组: x + y = 5 2 x + 3 y = 13

来源:2017年江苏省无锡市中考数学试卷(副卷)
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

(1)解不等式: 1 2 ( x - 1 ) > 2 + 3 x

(2)解方程组: x + y = 5 2 x + 3 y = 13

来源:2017年江苏省无锡市中考数学试卷(副卷)
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

怡然美食店的 A B 两种菜品,每份成本均为14元,售价分别为20元、18元,这两种菜品每天的营业额共为1120元,总利润为280元.

(1)该店每天卖出这两种菜品共多少份?

(2)该店为了增加利润,准备降低 A 种菜品的售价,同时提高 B 种菜品的售价,售卖时发现, A 种菜品售价每降0.5元可多卖1份; B 种菜品售价每提高0.5元就少卖1份,如果这两种菜品每天销售总份数不变,那么这两种菜品一天的总利润最多是多少?

来源:2017年江苏省泰州市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

张老师计划到超市购买甲种文具100个,他到超市后发现还有乙种文具可供选择.如果调整文具的购买品种,每减少购买1个甲种文具,需增加购买2个乙种文具.设购买 x 个甲种文具时,需购买 y 个乙种文具.

(1)①当减少购买1个甲种文具时, x =        y =      

②求 y x 之间的函数表达式.

(2)已知甲种文具每个5元,乙种文具每个3元,张老师购买这两种文具共用去540元.甲、乙两种文具各购买了多少个?

来源:2017年江苏省南京市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

某校计划购买一批篮球和足球,已知购买2个篮球和1个足球共需320元,购买3个篮球和2个足球共需540元.

(1)求每个篮球和每个足球的售价;

(2)如果学校计划购买这两种球共50个,总费用不超过5500元,那么最多可购买多少个足球?

来源:2017年江苏省常州市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

初中数学二元一次方程组试题