张老师计划到超市购买甲种文具100个,他到超市后发现还有乙种文具可供选择.如果调整文具的购买品种,每减少购买1个甲种文具,需增加购买2个乙种文具.设购买 x 个甲种文具时,需购买 y 个乙种文具.
(1)①当减少购买1个甲种文具时, x = , y = ;
②求 y 与 x 之间的函数表达式.
(2)已知甲种文具每个5元,乙种文具每个3元,张老师购买这两种文具共用去540元.甲、乙两种文具各购买了多少个?
如图,在平面直角坐标系中,点A为二次函数y=-x2+4x-1图象的顶点,图象与y轴交于点C,过点A并与AC垂直的直线记为BD,点B,D分别为直线与y轴和x轴的交点,点E是二次函数图象上与点C关于对称轴对称的点,将一块三角板的直角顶点放在A点,绕点A旋转,三角板的两直角边分别与线段OD和线段OB相交于点P,Q两点.(1)点A的坐标为____,点c的坐标为____;(2)求直线BD的表达式;(3)在三角板旋转过程中,平面上是否存在点Q,使得以D,E,P,R为顶点的四边形为菱形?若存在,直接写出P,Q,R的坐标;若不存在,请说明理由.
如图,在四边形ABCD中,∠BAD=∠BCD=90°,BC=6,CD=AC=8,M、N分别是对角线BD、AC的中点.(1)求证:MN⊥AC.(2)求MN的长.
对于平面直角坐标系中的任意两点A(a,b),B(c,d),我们把叫做A,B两点之间的直角距离,记作d(A,B).(1)已知O为坐标原点,①若点P坐标为(-1,2),则d(O,P)=____;②若Q(x,y)在第一象限,且满足d(O,Q)=2,请写出x与y之间满足的关系式,并在平面直角坐标系内画出符合条件的点Q组成的图形.(2)设M是一定点,N是直线y=mx+n上的动点,我们把d(M,N)的最小值叫做M到直线y=mx+n的直角距离,试求点M(2,-l)到直线y=x+3的直角距离.
某五金店购进一批数量足够多的p型节能电灯 进价为35元/只,以50元/只销售,每天销售20只.市场调研发现:若每只每降l元,则每天销售数量比原来多3只.现商店决定对Q型节能电灯进行降价促销活动,每只降价x元(x为正整数).在促销期间,商店要想每天获得最大销售利润,每只应降价多少元?每天最大销售毛利润为多少?(注:每只节能灯的销售毛利润指每只节能灯的销售价与进货价的差)
如图所示(左图为实景侧视图,右图为安装示意图),在屋顶的斜坡面上安装太阳能热水器:先安装支架AB和CD(均与水平面垂直),再将集热板安装在AD上.为使集热板吸热率更高,公司规定:AD与水平线夹角为θ1,且在水平线上的射影AF为140 cm.现已测量出屋顶斜面与水平面夹角为θ2,并已知tanθ1≈l.1,tanθ2≈0.4.如果安装工人已确定支架船高为25 cm,求支架CD的高(结果精确到1 cm)?