如图,点 P ( a , 3 ) 在抛物线 C : y = 4 ﹣ ( 6 ﹣ x ) 2 上,且在 C 的对称轴右侧.
(1)写出 C 的对称轴和 y 的最大值,并求 a 的值;
(2)坐标平面上放置一透明胶片,并在胶片上描画出点 P 及 C 的一段,分别记为 P ′ , C ′ .平移该胶片,使 C ′ 所在抛物线对应的函数恰为 y = ﹣ x 2 + 6 x ﹣ 9 .求点 P ′ 移动的最短路程.
函数常用的表示方法有三种.已知A、B两地相距30千米,小王以40千米/时的速度骑摩托车从A地出发匀速前往B地参加活动.请选择两种方法来表示小王与B地的距离y(千米)与行驶时间x(小时)之间的函数关系.
如图,在直角梯形ABCD中,∠D=∠BCD=90°,∠B=60°,AB = 6,AD = 9,点E是CD上的一个动点(E不与D重合),过点E作EF∥AC,交AD于点F(当E运动到C时,EF与AC重合),把△DEF沿着EF对折,点D的对应点是点G,如图①. ⑴ 求CD的长及∠1的度数;⑵ 设DE = x,△GEF与梯形ABCD重叠部分的面积为y.求y与x之间的函数关系式,并求x为何值时,y的值最大?最大值是多少?⑶ 当点G刚好落在线段BC上时,如图②,若此时将所得到的△EFG沿直线CB向左平移,速度为每秒1个单位,当E点移动到线段AB上时运动停止.设平移时间为t(秒),在平移过程中是否存在某一时刻t,使得△ABE为等腰三角形?若存在,请直接写出对应的t的值;若不存在,请说明理由.
如图,梯形ABCD中,AB∥CD,∠ABC=90°,AB=8,CD=6,BC=4,AB边上有一动点P(不与A、B重合),连结DP,作PQ⊥DP,使得PQ交射线BC于点E,设AP=x.⑴当x为何值时,△APD是等腰三角形?⑵若设BE=y,求y关于x的函数关系式;⑶若BC的长可以变化,在现在的条件下,是否存在点P,使得PQ经过点C?若存在,求出相应的AP的长;若不存在,请说明理由,并直接写出当BC的长在什么范围内时,可以存在这样的点P,使得PQ经过点C.
如图1,将底面为正方形的两个完全相同的长方体铁块放入一圆柱形水槽内,并向水槽内匀速注水,速度为vcm3/s,直至水面与长方体顶面平齐为止.水槽内的水深h(cm)与注水时间t(s)的函数关系如图2所示.根据图象完成下列问题:(1)一个长方体的体积是 cm3;(2)求图2中线段AB对应的函数关系式;(3)求注水速度v和圆柱形水槽的底面积S.
如图,半径为2的⊙E交x轴于A、B,交y轴于点C、D,直线CF交x轴负半轴于点F,连接EB、EC.已知点E的坐标为(1,1),∠OFC=30°.(1)求证:直线CF是⊙E的切线;(2)求证:AB=CD;(3)求图中阴影部分的面积.