如图所示, △ A 1 B 1 C 1 是由 △ ABC 平移后得到的,已知 △ ABC 中任意一点 P x 0 , y 0 经平移后对应点为 P 1 x 0 - 6 , y 0 - 2 .
(1)已知 A 2 , 6 , B 1 , 3 , C 5 , 3 , Q 3 , 5 ,请写出 A 1 , B 1 , C 1 , Q 1 的坐标
(2)试说明 △ A 1 B 1 C 1 是如何由 △ ABC 得到的?
(3)连接 A 1 A , C 1 C ,求出五边形 A 1 B 1 C 1 CA 的面积.
如图,在矩形ABCD中,E,F为BC上两点,且BE=CF,连接AF,DE交于点O.求证:(1)△ABF≌△DCE;(2)△AOD是等腰三角形.
直线与x、y轴分别交于点A、C.抛物线的图象经过A、C和点B(1,0).(1)求抛物线的解析式;(2)在直线AC上方的抛物线上有一动点D,当D与直线AC的距离DE最大时,求出点D的坐标,并求出最大距离是多少?
已知:⊙O的直径为3,线段AC=4,直线AC和PM分别与⊙O相切于点A,M.(1)求证:点P是线段AC的中点;(2)求sin∠PMC的值.
某校为了丰富学生的校园生活,准备购进一批篮球和足球.其中篮球的单价比足球的单价多40元,用1500元购进的篮球个数与900元购进的足球个数相等.(1)篮球和足球的单价各是多少元?(2)该校打算用1000元购买篮球和足球,问恰好用完1000元,并且篮球、足球都买有的购买方案有哪几种?
如图,D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,若MA=MC.(1)求证:CD=AN;(2)若AC⊥DN,∠CAN=30°,MN=1,求四边形ADCN的面积.