如图,D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,若MA=MC.(1)求证:CD=AN;(2)若AC⊥DN,∠CAN=30°,MN=1,求四边形ADCN的面积.
计算:
如图,抛物线与轴交于(,0)、(,0)两点,且,与轴交于点,其中是方程的两个根。 (1)求抛物线的解析式; (2)点是线段上的一个动点,过点作∥,交于点,连接,当的面积最大时,求点的坐标; (3)点在(1)中抛物线上,点为抛物线上一动点,在轴上是否存在点,使以为顶点的四边形是平行四边形,如果存在,求出所有满足条件的点的坐标,若不存在,请说明理由。
如图,已知,以为直径,为圆心的半圆交于点,点为的中点,连接交于点,为的角平分线,且,垂足为点。 (1)求证:是半圆的切线; (2)若,,求的长。