如图所示,在菱形 ABCD 中, AB = 4 , ∠ BAD = 120 ° , △ AEF 为正三角形,点 E , F 分别在菱形的边 BC , CD 上滑动,且 E , F 不与 B , C , D 重合.
(1)证明不论 E , F 在 BC , CD 上如何滑动,总有 BE = CF ;
(2)当点 E , F 在 BC , CD 上滑动时,分别探讨四边形 AECF 和 △ CEF 的面积是否发生变化?如果不变化,求出这个定值;如果变化,求最大(或最小)值.
已知抛物线y=(m﹣1)x2﹣2mx+m+1(m>1). (1)求抛物线与x轴的交点坐标; (2)若抛物线与x轴的两个交点之间的距离为2,求m的值; (3)若一次函数y=kx﹣k的图象与抛物线始终只有一个公共点,求一次函数的解析式.
已知二次函数y=2x2+m. (1)若点(﹣2,y1)与(3,y2)在此二次函数的图象上,则y1 y2(填“>”、“=”或“<”); (2)如图,此二次函数的图象经过点(0,﹣4),正方形ABCD的顶点C、D在x轴上,A、B恰好在二次函数的图象上,求图中阴影部分的面积之和.
如图,AB为⊙O的直径,射线AP交⊙O于C点,∠PCO的平分线交⊙O于D点,过点D作DE⊥AP交AP于E点. (1)求证:DE为⊙O的切线; (2)若DE=3,AC=8,求直径AB的长.
某商店经营一种笔记本,进价为每本5元,据市场分析,在一个月内,售价定为每本8元时.可卖出105本,而售价每上涨1元,就少卖5本. (1)设每本笔记本的售价为x元,一个月的利润为y元,写出y与x之间的函数关系式; (2)当售价定为每本多少元时,一个月的获利最大?最大利润是多少元?
四张大小、质地均相同的卡片上分别标有:1,2,3,4.现将标有数字的一面朝下扣在桌子上,然后由小明从中随机抽取一张(不放回),再从剩下的3张中随机取第二张. (1)用画树状图的方法,列出小明前后两次取得的卡片上所标数字的所有可能情况; (2)求取到的两张卡片上的数字之积为奇数的概率.