如图所示,在菱形 ABCD 中, AB = 4 , ∠ BAD = 120 ° , △ AEF 为正三角形,点 E , F 分别在菱形的边 BC , CD 上滑动,且 E , F 不与 B , C , D 重合.
(1)证明不论 E , F 在 BC , CD 上如何滑动,总有 BE = CF ;
(2)当点 E , F 在 BC , CD 上滑动时,分别探讨四边形 AECF 和 △ CEF 的面积是否发生变化?如果不变化,求出这个定值;如果变化,求最大(或最小)值.
(绵阳)计算:.
(绵阳)如图,O是△ABC的内心,BO的延长线和△ABC的外接圆相交于点D,连接DC,DA,OA,OC,四边形OADC为平行四边形. (1)求证:△BOC≌△CDA; (2)若AB=2,求阴影部分的面积.
(眉山)(本小题满分8分)如图,在一笔直的海岸线l上有A、B两个码头,A在B的正东方向,一艘小船从A码头沿它的北偏西600的方向行驶了20海里到达点P处,此时从B码头测得小船在它的北偏东450的方向.求此时小船到B码头的距离(即BP的长)和A、B两个码头间的距离(结果都保留根号).
(泸州)计算:.
(泸州)如图,AC=AE,∠1=∠2,AB=AD.求证:BC=DE.