如图所示,在菱形 ABCD 中, AB = 4 , ∠ BAD = 120 ° , △ AEF 为正三角形,点 E , F 分别在菱形的边 BC , CD 上滑动,且 E , F 不与 B , C , D 重合.
(1)证明不论 E , F 在 BC , CD 上如何滑动,总有 BE = CF ;
(2)当点 E , F 在 BC , CD 上滑动时,分别探讨四边形 AECF 和 △ CEF 的面积是否发生变化?如果不变化,求出这个定值;如果变化,求最大(或最小)值.
如图,∠AOP=∠BOP,AD⊥OB于D,BC⊥OA于C,AD与BC交于点P。求证:AP=BP。
如图,BD=CD,BF⊥AC于F,CE⊥AB于E。求证:点D在∠BAC的角平分线上。
如图所示,AE是∠BAC的角平分线,EB⊥AB于B,EC⊥AC于C,D是AE上一点,求证:BD=CD。
如图:AD=EB, BF=DG, BF∥DG,点A、B、C、D、E在同一直线上。求证: AF=EG。
如图,已知∠1=∠2,∠3=∠4,AB与CD相等吗?请你说明理由.