如图所示,AE是∠BAC的角平分线,EB⊥AB于B,EC⊥AC于C,D是AE上一点,求证:BD=CD。
如图,已知一次函数的图象与轴,轴分别相交于A,B两点,点C在AB上以每秒1个单位的速度从点B向点A运动,同时点D在线段AO上以同样的速度从点A向点O运动,运动时间用(单位:秒)表示.(1)求AB的长;(2)当为何值时,△ACD与△ABO相似?并直接写出此时点C的坐标.
如图,某校九年级(1)班的一个学习小组进行测量小山高度的实践活动,部分同学在山脚点A测得山腰上一点D的仰角为300,并测得AD的长度为180米;另一部分同学在山顶点B测得山脚点A的俯角为450,山腰点D的俯角为600。请你帮助他们计算出小山的高度BC(计算过程和结果都不取近似值)。
如图,在直角坐标系中△ABC的A、B、C三点坐标为A(7,1)、B(8,2)、C(9,0).(1) 请在图中画出△ABC的以点P (12,0)为位似中心,且与△ABC的相似比为3的位似图形△A/B/C/(要求与△ABC同在P点一侧);(2)求线段BC的对应线段所在直线的解析式.
某中学七年级有8个班,要从中选出2个班代表学校参加某项活动。七(1)班必须参加,另外再从七(2)至七(8)班选出1个班.七(5)班有学生建议用如下的方法:从装有四个标有数字1、2、3、4的球袋中摸出1个球,记下数字,放回摇匀后再摸出1个球(球的大小、形状与质量完全一样),两次摸出的球上的数字和是几,就选几班。(1)分别求出选七(2)、七(5)、七(8)班的概率;(2)你认为这种方法公平吗?如不公平,请你设计一个公平的方案
如图,点C、D在线段AB上,△PCD是等边三角形.(1)当AC、CD、DB满足怎样的关系时,△ACP∽△PDB?(2)当△ACP∽△PDB时,求∠APB的度数.