如图抛物线 y = a x 2 + bx ( a > 0 ) 与双曲线 y = k x 有公共点 A , B ,已知点 A 的坐标为 1 , 4 ,点 B 在第三象限内,且 △ AOB 的面积为 3 ( O 为坐标原点).
(1)求实数 a , b , k 的值;
(2)过抛物线上点 A 作直线 AC / / x 轴,交拋物线于另一点 C ,求所有满足 △ EOC ∼ △ AOB 的点 E 的坐标.
已知:如图,AD⊥BC于D,EG⊥BC与G,AD是∠BAC的角平分线,试说明∠E=∠3.
先阅读下面的内容,再解决问题.例题:若,求m和n的值.解:∵,即:,∴ ,即:,,∴,.(1)若,求的值.(2)若三角形三边满足,判断三角形的形状.
如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点.(1)画出△ABC向右平移4个单位后得到的△A1B1C1;(2)图中AC与A1C1的关系是: ;(3)画出△ABC中AB边上的中线CD;(4)△ACD的面积为 .
先化简,再求值:,其中.
(1)如图1,a∥b,则∠1+∠2= (2)如图2,AB∥CD,则∠1+∠2+∠3= ,并说明理由(3)如图3,a∥b,则∠1+∠2+∠3+∠4= (4)如图4,a∥b,根据以上结论,试探究∠1+∠2+∠3+∠4+…+∠n= (直接写出你的结论,无需说明理由)