甲、乙、丙三人之间相互传球,球从一个人手中随机传到另外一个人手中,共传球三次.
(1)若开始时球在甲手中,求经过三次传球后,球传回到甲手中的概率是多少?
(2)若乙想使球经过三次传递后,球落在自己手中的概率最大,乙会让球开始时在谁手中?请说明理由.
先化简,然后从中选出一个合适的整数作为的值代入求值.
已知:,,求的算术平方根.
已知抛物线顶点,经过点,且与直线交于,两点.
(1)求抛物线的解析式;
(2)若在抛物线上恰好存在三点,,,满足,求的值;
(3)在,之间的抛物线弧上是否存在点满足?若存在,求点的横坐标;若不存在,请说明理由.
(坐标平面内两点,,,之间的距离
为落实“精准扶贫”精神,市农科院专家指导李大爷利用坡前空地种植优质草莓.根据场调查,在草莓上市销售的30天中,其销售价格(元公斤)与第天之间满足为正整数),销售量(公斤)与第天之间的函数关系如图所示:
如果李大爷的草莓在上市销售期间每天的维护费用为80元.
(1)求销售量与第天之间的函数关系式;
(2)求在草莓上市销售的30天中,每天的销售利润与第天之间的函数关系式;(日销售利润日销售额日维护费)
(3)求日销售利润的最大值及相应的.
如图,为了测量一栋楼的高度,小明同学先在操场上处放一面镜子,向后退到处,恰好在镜子中看到楼的顶部;再将镜子放到处,然后后退到处,恰好再次在镜子中看到楼的顶部,,,,在同一条直线上),测得,,如果小明眼睛距地面髙度,为,试确定楼的高度.