如图,设椭圆 C : x 2 a 2 + y 2 = 1 ( a > 1 )
(1)求直线 y = kx + 1 被椭圆截得到的弦长(用a,k表示)
(2)若任意以点 A ( 0 , 1 ) 为圆心的圆与椭圆至多有三个公共点,求椭圆的离心率的取值范围.
设椭圆 x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ) 的左、右焦点分别为 F 1 , F 2 ,,右顶点为 A ,上顶点为 B .已知 A B = 3 2 F 1 F 2 . (1)求椭圆的离心率; (2)设 P 为椭圆上异于其顶点的一点,以线段 P B 为直径的圆经过点 F 1 ,经过点 F 2 的直线 l 与该圆相切与点 M , M F 2 = 2 2 .求椭圆的方程.
如图,四棱锥的底面是平行四边形,,,分别是棱的中点. (1)证明平面; (2)若二面角为, ①证明:平面平面. ②求直线与平面所成角的正弦值.
在中,内角所对的边分别为,已知.
(1)求的值; (2)求的值.
某校夏令营有3名男同学和3名女同学,其年级情况如下表:
(1)现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同)用表中字母列举出所有可能的结果 (2)设为事件"选出的2人来自不同年级且恰有1名男同学和1名女同学",求事件发生的概率.
设函数
(1)证明:; (2)若,求的取值范围.