设椭圆 x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ) 的左、右焦点分别为 F 1 , F 2 ,,右顶点为 A ,上顶点为 B .已知 A B = 3 2 F 1 F 2 . (1)求椭圆的离心率; (2)设 P 为椭圆上异于其顶点的一点,以线段 P B 为直径的圆经过点 F 1 ,经过点 F 2 的直线 l 与该圆相切与点 M , M F 2 = 2 2 .求椭圆的方程.
设函数 (Ⅰ)若, ( i )求的值; ( ii)在 (Ⅱ)当上是单调函数,求的取值范围。 (参考数据
已知直线为曲线在点(1,0)处的切线,直线为该曲线的另一条切线,且的斜率为1. (Ⅰ)求直线、的方程 (Ⅱ)求由直线、和x轴所围成的三角形面积。
求由抛物线与过焦点的弦所围成的图形面积的最小值.
水以20米/分的速度流入一圆锥形容器,设容器深30米,上底直径12米,试求当水深10米时,水面上升的速度.
求函数的导数。