设椭圆 x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ) 的左、右焦点分别为 F 1 , F 2 ,,右顶点为 A ,上顶点为 B .已知 A B = 3 2 F 1 F 2 . (1)求椭圆的离心率; (2)设 P 为椭圆上异于其顶点的一点,以线段 P B 为直径的圆经过点 F 1 ,经过点 F 2 的直线 l 与该圆相切与点 M , M F 2 = 2 2 .求椭圆的方程.
在直角坐标系xOy中,直线l的参数方程为(t为参数,0≤α<π)。以原点为极点,x轴的正半轴为极轴建立极坐标系。已知曲线C的极坐标方程为 ρcos2θ=4sinθ。 (1)求直线l与曲线C的平面直角坐标方程; (2)设直线l与曲线C交于不同的两点A、B,若,求α的值。
已知AB是圆O的直径,C为圆O上一点,CD⊥AB于点D,弦BE与CD、AC分别交于点M、N,且MN=MC (1)求证:MN=MB; (2)求证:OC⊥MN。
设函数,. (1)若函数在上单调递增,求实数的取值范围; (2)求函数的极值点. (3)设为函数的极小值点,的图象与轴交于两点,且,中点为, 求证:.
已知椭圆的离心率为,以原点为圆心,椭圆短半轴长为半径的圆与直线相切. (1)求椭圆的标准方程; (2)过右焦点作斜率为的直线交曲线于、两点,且,又点关于原点的对称点为点,试问、、、四点是否共圆?若共圆,求出圆心坐标和半径;若不共圆,请说明理由.
如图,已知长方形中,,为的中点.将沿折起,使得平面平面. (1)求证:; (2)若点是线段上的一动点,问点E在何位置时,二面角的余弦值为.