设椭圆 x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ) 的左、右焦点分别为 F 1 , F 2 ,,右顶点为 A ,上顶点为 B .已知 A B = 3 2 F 1 F 2 . (1)求椭圆的离心率; (2)设 P 为椭圆上异于其顶点的一点,以线段 P B 为直径的圆经过点 F 1 ,经过点 F 2 的直线 l 与该圆相切与点 M , M F 2 = 2 2 .求椭圆的方程.
在正方体中,⑴求证:∥平面⑵求与平面所成的角。
求与定点及定直线的距离的比是5:4的点P的轨迹
设F1、F2分别为椭圆C: =1(a>b>0)的左、右两个焦点. (1)若椭圆C上的点A(1,)到F1、F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标; (2)设点K是(1)中所得椭圆上的动点,求线段F1K的中点的轨迹方程;
已知圆C在x轴上的截距为和3,在y轴上的一个截距为1.(1)求圆C的标准方程;(2)若过点的直线l被圆C截得的弦AB的长为4,求直线l的倾斜角.
已知圆与两坐标轴都相切,圆心到直线的距离等于。(1)求圆的方程。(2)若直线与圆相切,求证。