现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱雉 P - A 1 B 1 C 1 D 1 ,下部分的形状是正四棱柱 ABCD - A 1 B 1 C 1 D 1 (如图所示),并要求正四棱柱的高 P O 1 的四倍.
(1)若 AB = 6 m , PO 1 = 2 m ,则仓库的容积是多少?
(2)若正四棱柱的侧棱长为 6 m ,则当 P O 1 为多少时,仓库的容积最大?
已知数列满足, 证明:,()
在一个特定时段内,以点E为中心的7n mile以内海域被设为警戒水域.点E正北55n mile处有一个雷达观测站A,某时刻测得一艘匀速直线行驶的船只位于点A北偏东45°且与点A相距40n mile的位置B,经过40分钟又测得该船已行驶到点A北偏东(其中,)且与点A相距10n mile的位置C. (I)求该船的行驶速度(单位:n mile /h); (II)若该船不改变航行方向继续行驶.判断它是否会进入警戒水域,并说明理由.
已知 (1)若p >1时,解关于x的不等式; (2)若对时恒成立,求p的范围.
如图,在四棱锥中,,,且,E是PC的中点. (1)证明:; (2)证明:;
已知:是的内角,分别是其对边长,向量,,. (Ⅰ)求角A的大小; (Ⅱ)若求的长.