(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy中,已知曲线,将上的所有点的横坐标、纵坐标分别伸长为原来的、2倍后得到曲线. 以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线.(Ⅰ)试写出直线的直角坐标方程和曲线的参数方程;(Ⅱ)在曲线上求一点P,使点P到直线的距离最大,并求出此最大值.
(本小题满分12分) 矩形ABCD的对角线AC、BD相交于点M (2,0),AB边所在直线的方程为:,若点在直线AD上. (1)求点A的坐标及矩形ABCD外接圆的方程; (2)过点的直线与ABCD外接圆相交于A、B两点,若,求直线m的方程.
(本小题满分12分) 如图,在△ABC中,,. (1)求; (2)设的中点为,求中线的长.
(本小题满分12分) 如图,四棱锥中,底面是边长为2的正方形,,且,为中点. (1)求证:平面; (2)求二面角的余弦值.
(本小题满分10分) 命题函数是增函数.命题成立,若为真命题,求实数的取值范围.
设函数(a>0,b,cÎR),曲线在点P(0,f (0))处的切线方程为. (Ⅰ)试确定b、c的值; (Ⅱ)是否存在实数a使得过点(0,2)可作曲线的三条不同切线,若存在,求出a的取值范围;若不存在,请说明理由.