(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy中,已知曲线,将上的所有点的横坐标、纵坐标分别伸长为原来的、2倍后得到曲线. 以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线.(Ⅰ)试写出直线的直角坐标方程和曲线的参数方程;(Ⅱ)在曲线上求一点P,使点P到直线的距离最大,并求出此最大值.
已知函数. (Ⅰ)求函数的单调区间; (Ⅱ)如果对于任意的,总成立,求实数的取值范围; (Ⅲ)是否存在正实数,使得:当时,不等式恒成立?请给出结论并说明理由.
设函数. (Ⅰ)证明:时,函数在上单调递增; (Ⅱ)证明:.
已知且,函数,,记. (Ⅰ)求函数的定义域的表达式及其零点; (Ⅱ)若关于的方程在区间内仅有一解,求实数的取值范围.
已知,,,为坐标原点. (Ⅰ),求的值;; (Ⅱ)若,且,求与的夹角.
已知函数,()在处取得最小值. (Ⅰ)求的值; (Ⅱ)若在处的切线方程为,求证:当时,曲线不可能在直线的下方; (Ⅲ)若,()且,试比较与的大小,并证明你的结论.