已知关于x的函数 y = f ( x ) , y = g ( x ) 与 h ( x ) = kx + b ( k , b ∈ R ) 在区间D上恒有 f ( x ) ≥ h ( x ) ≥ g ( x ) .
(1)若 f x = x 2 + 2 x , g x = - x 2 + 2 x , D = ( - ∞ , + ∞ ) ,求h(x)的表达式;
(2)若 f ( x ) = x 2 - x + 1 , g ( x ) = k ln x , h ( x ) = kx - k , D = ( 0 , + ∞ ) ,求k的取值范围;
(3)若 f ( x ) = x 4 - 2 x 2 , g ( x ) = 4 x 2 - 8 , h ( x ) = 4 t 2 - t x - 3 t 4 + 2 t 2 ( 0 < t ≤ 2 ) , D = m , n ⊆ - 2 , 2 , 求证: n - m ≤ 7 .
已知函数是定义在R上的偶函数,且当时,. (Ⅰ)现已画出函数在y轴左侧的图象,如图所示,请补出完整函数的图象,并根据图象写出函数的增区间; (Ⅱ)求出函数的解析式和值域.
已知函数 (Ⅰ)判断函数的奇偶性,并加以证明; (Ⅱ)用定义证明在上是减函数; (Ⅲ)函数在上是单调增函数还是单调减函数?(直接写出答案,不要求写证明过程).
设集合,,. (Ⅰ)若,求实数的取值范围; (Ⅱ)若且,求实数的取值范围.
(1) (2)
已知函数。利用函数构造一个数列,方法如下:对于定义域中给定的,令,… 如果取定义域中任一值作为,都可以用上述方法构造出一个无穷数列。 (1)求实数a的值; (2)若,求的值; (3)设,试问:是否存在n使得成立,若存在,试确定n及相应的的值;若不存在,请说明理由。