已知关于x的函数 y = f ( x ) , y = g ( x ) 与 h ( x ) = kx + b ( k , b ∈ R ) 在区间D上恒有 f ( x ) ≥ h ( x ) ≥ g ( x ) .
(1)若 f x = x 2 + 2 x , g x = - x 2 + 2 x , D = ( - ∞ , + ∞ ) ,求h(x)的表达式;
(2)若 f ( x ) = x 2 - x + 1 , g ( x ) = k ln x , h ( x ) = kx - k , D = ( 0 , + ∞ ) ,求k的取值范围;
(3)若 f ( x ) = x 4 - 2 x 2 , g ( x ) = 4 x 2 - 8 , h ( x ) = 4 t 2 - t x - 3 t 4 + 2 t 2 ( 0 < t ≤ 2 ) , D = m , n ⊆ - 2 , 2 , 求证: n - m ≤ 7 .
如右图,设由抛物线与过它的焦点F的直线所围成封闭曲面图形的面积为(阴影部分)。(1)设直线与抛物线交于两点,且,直线的斜率为,试用表示;(2)求的最小值。
已知函数,求导函数,并确定的单调区间
统计表明,某种型号的汽车在匀速行驶中每小时的耗油量(升)关于行驶速度(千米/小时)的函数解析式可以表示为:已知甲、乙两地相距100千米。(1)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?(2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?
设 在和上是单调增函数;不等式的解集为。如果与有且只有一个正确,求的取值范围。
已知函数,当时,有极大值。(1)求的值; (2)求函数的极小值。