某校高三有四个班,某次数学测试后,学校随机地在各班抽取部分学生进行测试成绩统计,各班被抽取的学生人数恰好成等差数列,人数最少的班被抽取了22人. 抽取出来的所有学生的测试成绩统计结果的频率分布条形图如图所示,其中120~130(包括120分但不包括130分)的频率为0.05,此分数段的人数为5人.(1)问各班被抽取的学生人数各为多少人?(2)求平均成绩;(3)在抽取的所有学生中,任取一名学生,求分数不低于90分的概率.
(本小题满分12分)在△ABC中,内角对边的边长分别是,已知,.(1)若△ABC的面积等于,求;(2)若,求△ABC的面积.
(本小题满分12分)某校高三数学竞赛初赛考试后,对90分以上(含90分)的成绩进行统计,其频率分布直方图如图所示.若130~140分数段的人数为2人.(1)估计这所学校成绩在90~140分之间学生的参赛人数; (2)估计参赛学生成绩的中位数;(3)现根据初赛成绩从第一组和第五组(从低分段到高分段依次为第一组、第二组、…、第五组)中任意选出两人,形成帮扶学习小组.若选出的两人成绩之差大于20,则称这两人为“黄金搭档组”,试求选出的两人为“黄金搭档组”的概率.
(本小题满分10分)在正方体中,E,F分别是CD,A1D1中点(1)求证:AB1⊥BF;(2)求证:AE⊥BF;(3)棱CC1上是否存在点P,使BF⊥平面AEP,若存在,确定点P的位置;若不存在,说明理由
(本小题共13分)已知数列是首项为,公比的等比数列.设,数列满足.(Ⅰ)求证:数列成等差数列;(Ⅱ)求数列的前项和;(Ⅲ)若对一切正整数恒成立,求实数的取值范围.
(本小题共14分)已知椭圆的中心在坐标原点,长轴长为,离心率,过右焦点的直线交椭圆于,两点.(Ⅰ)求椭圆的方程;(Ⅱ)当直线的斜率为1时,求的面积;(Ⅲ)若以为邻边的平行四边形是矩形,求满足该条件的直线的方程.