某校高三有四个班,某次数学测试后,学校随机地在各班抽取部分学生进行测试成绩统计,各班被抽取的学生人数恰好成等差数列,人数最少的班被抽取了22人. 抽取出来的所有学生的测试成绩统计结果的频率分布条形图如图所示,其中120~130(包括120分但不包括130分)的频率为0.05,此分数段的人数为5人.(1)问各班被抽取的学生人数各为多少人?(2)求平均成绩;(3)在抽取的所有学生中,任取一名学生,求分数不低于90分的概率.
【改编】(本小题满分14分)已知函数. (1)当,时,求函数的极值; (2)若,且对,不等式恒成立,求的取值范围.
(本小题满分14分)设抛物线的顶点在坐标原点,焦点在轴正半轴上,过点的直线交 抛物线于,两点,线段的长是,的中点到轴的距离是. (1)求抛物线的标准方程; (2)在抛物线上是否存在不与原点重合的点,使得过点的直线交抛物线于另一点,满足, 且直线与抛物线在点处的切线垂直?若存在,求出点的坐标;若不存在,请说明理由.
(本小题满分14分)数列()的前项和满足. (1)求; (2)若,设数列的前项和为,求.
(本小题满分14分)如图,直三棱柱中,,分别是,的中点. (1)证明:平面; (2)设,,求三棱锥的体积.
(本小题满分12分)以下茎叶图记录了甲、乙两组各三名同学在期末考试中的数学成绩.乙组 记录中有一个数字模糊,无法确认,假设这个数字具有随机性,并在图中以表示. (1)若甲、乙两个小组的数学平均成绩相同,求的值; (2)求乙组平均成绩超过甲组平均成绩的概率.