(本题满分14分) 已知点是⊙:上的任意一点,过作垂直轴于,动点满足。(1)求动点的轨迹方程; (2)已知点,在动点的轨迹上是否存在两个不重合的两点、,使 (O是坐标原点),若存在,求出直线的方程,若不存在,请说明理由。
设函数.(Ⅰ)当时,解不等式; (Ⅱ)当时,不等式的解集为,求实数的取值范围.
直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数),为直线与曲线的公共点. 以原点为极点,轴的正半轴为极轴建立极坐标系. (Ⅰ)求点的极坐标; (Ⅱ)将曲线上所有点的纵坐标伸长为原来的倍(横坐标不变)后得到曲线,过点作直线,若直线被曲线截得的线段长为,求直线的极坐标方程.
已知函数在处取得极值. (Ⅰ)求的值; (Ⅱ)证明:当时,.
已知是抛物线上的点,是的焦点, 以为直径的圆与轴的另一个交点为. (Ⅰ)求与的方程; (Ⅱ)过点且斜率大于零的直线与抛物线交于两点,为坐标原点,的面积为,证明:直线与圆相切.
如图,在四棱锥中,为平行四边形,且,,为的中点,,. (Ⅰ)求证://; (Ⅱ)求三棱锥的高.