某水产养殖场拟造一个无盖的长方体水产养殖网箱,为了避免混养,箱中要安装一些筛网,其平面图如下,如果网箱四周网衣(图中实线部分)建造单价为每米56元,筛网(图中虚线部分)的建造单价为每米48元,网箱底面面积为160平方米,建造单价为每平方米50元,网衣及筛网的厚度忽略不计.(1)把建造网箱的总造价y(元)表示为网箱的长x(米)的函数,并求出最低造价;(2)若要求网箱的长不超过15米,宽不超过12米,则当网箱的长和宽各为多少米时,可使总造价最低?(结果精确到0.01米)
设数列{an}满足:a1=1,an+1=3an,n∈N*.设Sn为数列{bn}的前n项和, 已知b1≠0,2bn–b1=S1 Sn,n∈N*. (Ⅰ)求数列{an},{bn}的通项公式; (Ⅱ)设cn=bn log3 an,求数列{cn}的前n项和Tn .
选修4—5:不等式选讲 已知关于的不等式,其解集为. (Ⅰ)求的值; (Ⅱ)若,均为正实数,且满足,求的最小值.
选修4-4:坐标系与参数方程 已知平面直角坐标系中,以为极点,轴的正半轴为极轴,建立极坐标系,曲线方程为.的参数方程为(为参数). (Ⅰ)写出曲线的直角坐标方程和的普通方程; (Ⅱ)设点为曲线上的任意一点,求点到曲线距离的取值范围.
选修4—1:几何证明选讲 如图,四边形内接于⊙,过点作⊙的切线EP交CB的延长线于P,已知. 证明(Ⅰ); (Ⅱ).
已知函数f(x)=,曲线在点(0,2)处的切线与轴交点的横坐标为-2. (Ⅰ)求a; (Ⅱ)当时,曲线与直线只有一个交点,求x的取值范围.