(本小题满分8分)已知函数(1) 若函数的图象经过点,求的值;(2) 判断并证明函数的奇偶性;(3) 比较与的大小,并写出必要的理由.
已知椭圆:的离心率为,直线:与以原点为圆心、以椭圆的短半轴长为半径的圆相切.(Ⅰ)求椭圆的方程;(Ⅱ)设椭圆的左焦点为,右焦点,直线过点且垂直于椭圆的长轴,动直线垂直于点,线段垂直平分线交于点,求点的轨迹的方程;(Ⅲ)设与轴交于点,不同的两点在上,且满足,求的取值范围.
数列的前项和为,.(Ⅰ)设,证明:数列是等比数列;(Ⅱ)求数列的前项和.(Ⅲ)若,,求不超过的最大的整数值.
甲、乙两人进行围棋比赛,规定每局胜者得1分,负者得0分,比赛进行到有一方比对方多2分或打满6局时停止.设甲在每局中获胜的概率为,且各局胜负相互独立.已知第二局比赛结束时比赛停止的概率为.(Ⅰ)求的值;(Ⅱ)设表示比赛停止时已比赛的局数,求随机变量的分布列和数学期望.
已知函数,.(Ⅰ)求的极值;(Ⅱ)当时,若不等式在上恒成立,求的取值范围.
如图,在三棱锥中,,,,设顶点A在底面上的射影为R.(Ⅰ)求证: ;(Ⅱ)设点在棱上,且,试求二面角的余弦值.