已知顶点为原点的抛物线的焦点与椭圆的右焦点重合与在第一和第四象限的交点分别为.(1)若△AOB是边长为的正三角形,求抛物线的方程;(2)若,求椭圆的离心率;(3)点为椭圆上的任一点,若直线、分别与轴交于点和,证明:.
已知定义域为的函数是奇函数. (1)求的值; (2)若对任意的,不等式恒成立,求的取值范围.
某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元. (1)当一次订购量为多少个时,零件的实际出厂单价恰降为51元? (2)设一次订购量为个,零件的实际出厂单价为元.写出函数的表达式; (3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1000个,利润又是多少元?(工厂售出一个零件的利润=实际出厂单价-成本)
已知函数; (1)若的定义域为,求实数的取值范围. (2)若的值域为,则实数的取值范围. (3)求函数的递减区间.
已知是上的奇函数,且当时,; (1)求的解析式; (2)作出函数的图象(不用列表),并指出它的增区间.
计算: (1)已知全集为,集合,,求. (2)