已知顶点为原点的抛物线的焦点与椭圆的右焦点重合与在第一和第四象限的交点分别为.(1)若△AOB是边长为的正三角形,求抛物线的方程;(2)若,求椭圆的离心率;(3)点为椭圆上的任一点,若直线、分别与轴交于点和,证明:.
已知圆的圆心在第二象限,且经过点和,线段的垂直平分线交圆于点和,且.(1) 求圆的方程;⑵设点在圆上,试问使△的面积等于8的点共有几个?证明你的结论.
如图: PA⊥平面ABCD,ABCD是矩形,PA=AB=1,AD=,点F是PB的中点,点E在边BC上移动.(Ⅰ)求三棱锥E-PAD的体积;(Ⅱ)当点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;(Ⅲ)证明:无论点E在边BC的何处,都有PE⊥AF.
已知且,.(1)求函数的定义域;(2)当时,判断函数的单调性,并用函数单调性的定义证明你的结论