已知椭圆 C : x 2 a 2 + y 2 b 2 = 1 过点 A ( - 2 , - 1 ) ,且 a = 2 b .
(Ⅰ)求椭圆C的方程:
(Ⅱ)过点的直线l交椭圆C于点 M , N ,直线 MA , NA 分别交直线 x = - 4 于点 P , Q .求 | PB | | BQ | 的值.
某市为准备参加省中学生运动会,对本市甲、乙两个田径队的所有跳高运动员进行了测试,用茎叶图表示出甲、乙两队运动员本次测试的跳高成绩(单位:cm,且均为整数),同时对全体运动员的成绩绘制了频率分布直方图.跳高成绩在185cm以上(包括185cm)定义为“优秀”,由于某些原因,茎叶图中乙队的部分数据丢失,但已知所有运动员中成绩在190cm以上(包括190cm)的只有两个人,且均在甲队. (Ⅰ)求甲、乙两队运动员的总人数a及乙队中成绩在[160,170)(单位:cm)内的运动员人数b; (Ⅱ)在甲、乙两队全体成绩为“优秀”的运动员的跳高成绩的平均数和方差; (Ⅲ)在甲、乙两队中所有的成绩为“优秀”的运动员中随机选取2人参加省中学生运动会正式比赛, 求所选取两名运动员均来自甲队的概率.
如图,在直三棱柱ABC—A1B1C1,AB=AC=1,∠BAC=90°,连结A1B与∠A1BC=60°. (Ⅰ)求证:AC⊥A1B; (Ⅱ)设D是BB1的中点,求三棱锥D-A1BC1的体积.
设数列{an}是等差数列,数列{bn}的前n项和Sn满足且 (Ⅰ)求数列{an}和{bn}的通项公式: (Ⅱ)设Tn为数列{Sn}的前n项和,求Tn.
设正有理数x是的一个近似值,令. (Ⅰ)若; (Ⅱ)比较y与x哪一个更接近于,请说明理由.
在直角坐标系xOy中,圆C的参数方程为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系. (Ⅰ)求圆C的极坐标方程; (Ⅱ)直线的极坐标方程是,射线与圆C的交点为O,P,与直线的交点为Q,求线段PQ的长.