已知四边形ABCD是菱形,∠BAD=60°,四边形BDEF是矩形,平面BDEF⊥平面ABCD,G,H分别是CE,CF的中点.(1)求证:平面AEF∥平面BDGH(2)若平面BDGH与平面ABCD所成的角为60°,求直线CF与平面BDGH所成的角的正弦值.
把正奇数数列中的数按上小下大、左小右大的原则排成如图的三角形数表:设是位于这个三角形数表中从上往下数第m行、从左往右数第n个数.(1)求;(2)若,求m,n的值;(3)已知函数,若记三角形数表中从上往下数第n行各数的和为bn,求数列{f(bn)}的前n项和.
现要设计一个如图所示的金属支架(图中实线所示),设计要求是:支架总高度AH为6米,底座BCDEF是以B为顶点,以CDEF为底面的正四棱锥,C,D,E,F在以半径为1米的圆上,支杆AB⊥底面CDEF.市场上,底座单价为每米10元,支杆AB单价为每米20元.设侧棱BC与底面所成的角为θ.(1)写出的取值范围;(2)当θ取何值时,支架总费用y(元)最少?
已知二次函数:(1)若函数在区间上存在零点,求实数q的取值范围;(2)问:是否存在常数t(),当时,的值域为区间D,且D的长度为.
在锐角中,角A、B、C所对的边分别是a、b、c,为△ABC的外心.(1)若,求的值;(2)已知,,,求的值.
己知函数,且,,(Ⅰ)求的最大值与最小值;(Ⅱ)求的单调增区间.