已知函数.(1)求的最小正周期; (2)求在区间上的最大值和最小值.
已知函数,,其中m∈R. (1)若0<m≤2,试判断函数f (x)=f1 (x)+f2 (x)的单调性,并证明你的结论; (2)设函数 若对任意大于等于2的实数x1,总存在唯一的小于2的实数x2,使得g (x1) = g (x2) 成立,试确定实数m的取值范围.
某连锁分店销售某种商品,每件商品的成本为4元,并且每件商品需向总店交a元(1≤a≤3)的管理费,预计当每件商品的售价为元(8≤x≤9)时,一年的销售量为(10-x)2万件.(1)求该连锁分店一年的利润L(万元)与每件商品的售价x的函数关系式L(x)(销售一件商品获得的利润l=x-(a+4));(2)当每件商品的售价为多少元时,该连锁分店一年的利润L最大,并求出L的最大值M(a).
如图,四边形ABCD为矩形,平面ABCD⊥平面ABE, BE=BC,F为CE上的一点,且BF⊥平面ACE. (1)求证:AE⊥BE; (2)求证:AE∥平面BFD.
(本题满分14分)如图,已知二次函数,直线l:x = 2,直线l:y = 3tx(其中1< t < 1,t为常数);若直线l、l与函数的图象所围成的封闭图形如图(5)阴影所示.(1)求y = ;(2)求阴影面积s关于t的函数s = u(t)的解析式;(3)若过点A(1,m)(m≠4)可作曲线s=u(t)(t∈R)的三条切线,求实数m的取值范围.
(本题满分12分)设A(x,y)、B(x,y) 是椭圆(a > b > 0) 上的两点,, = (,),且满足· = 0,椭圆的离心率e = ,短轴长为2,O为坐标原点.(1)求椭圆的方程;(2)若存在斜率为k的直线AB过椭圆的焦点F(0,c)(c为半焦距),求直线AB的斜率k的值.