定义在R上的单调函数满足,且对任意都有(I)试求的值并证明函数为奇函数;(II)若对任意恒成立,求实数m的取值范围。
(本小题满分14分)如图所示,椭圆C: 的两个焦点为、,短轴两个端点为、.已知、、 成等比数列,,与 轴不垂直的直线 与C 交于不同的两点、,记直线、的斜率分别为、,且.(Ⅰ)求椭圆 的方程;(Ⅱ)求证直线 与 轴相交于定点,并求出定点坐标;(Ⅲ)当弦 的中点落在四边形 内(包括边界)时,求直线 的斜率的取值范围.
(本小题满分12分)函数,其中.(Ⅰ)试讨论函数 的单调性;(Ⅱ)已知当(其中 是自然对数的底数)时,在 上至少存在一点,使 成立,求 的取值范围;(Ⅲ)求证:当 时,对任意,,有.
(本小题满分12分)已知 是各项都为正数的数列,其前 项和为,且满足.(Ⅰ)求,, 的值;(Ⅱ)求数列 的通项公式;(Ⅲ)令=,求证.
(本小题满分12分)已知四棱锥 的直观图和三视图如图所示, 是 的中点.(Ⅰ)若 是 上任一点,求证:;(Ⅱ)设, 交于点,求直线 与平面 所成角的正弦值.
(本小题满分12分)甲、乙、丙三人玩游戏,规定每次在写有数字1,2,3,4,5,6的6张卡片中随机抽取一张,若数字为1或2或3,则甲得1分;若数字为4或5,则乙得1分;若数字为6,则丙得1分.一共抽取3次,得2分或3分者获胜.(Ⅰ)求乙获胜的概率;(Ⅱ)记为甲得的分数,求随机变量的概率分布列和数学期望.